Reconstrucción de edificios y análisis urbanístico de centros históricos con fotogrametría aérea

Autores/as

DOI:

https://doi.org/10.3989/ic.79082

Palabras clave:

Fotogrametría aérea, extracción de edificios, geometrías complejas, sistemas de cartografiado móvil, análisis urbanístico

Resumen


Los centros urbanos históricos son escenarios complejos para su reconstrucción tridimensional. Los avances en la reconstrucción automática son de gran utilidad para realizar análisis urbanísticos que de otra manera requerirían un elevado esfuerzo humano. En este artículo, se derivarán de forma automática parámetros urbanísticos para el análisis de los centros históricos. En particular, se utiliza un vuelo fotogramétrico como base para la obtención de modelos 3D de edificios con propiedades métricas. Los resultados revelan que la información geométrica de los edificios (alturas, áreas y volúmenes) y los atributos de densidad urbana (intensidad de ocupación del suelo en 2D y 3D) juegan un papel esencial en el diseño, planificación y gestión de los centros históricos. El enfoque propuesto fue validado en el centro histórico de la ciudad de Trento (Italia) utilizando datos catastrales y un sistema de cartografiado móvil como referencia geométrica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Vinuesa, M.A.T. (1995). Ciudad y patrimonio cultural: el centro histórico de Cuenca. Anales de geografía de la Universidad Complutense, 15, 741-758.

(2) Eguíluz, V. P. (2014). El patrimonio urbano y la planificación. Interpretación de los conjuntos históricos de Castilla y León y sus instrumentos urbanísticos. Ciudades, 17, 221-242.

(3) Solis, E., Ureña, J. M., and Mohino, I. (2018). Centralidad territorial y especialización funcional como guía para la intervención en municipios con conjunto histórico. El caso de la Región Urbana Madrileña. ACE: Architecture, City and Enviroment, 13(37), 99-132.

(4) Tatjer, M. (2000). Las intervenciones urbanísticas en el centro histórico de Barcelona: de la Vía Layetana a los nuevos programas de rehabilitación. Oportunidades de desarrollo sostenible para los conjuntos urbanos históricos. III Jornadas de Geografía Urbana, 13-28.

(5) Valencia, J., Muñoz-Nieto, A., and Rodríguez-Gonzálvez, P. (2015). Virtual modeling for cities of the future. State-of-the art and virtual modeling for cities of the future. State-of-the art and future challenges. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 179-185. https://doi.org/10.5194/isprsarchives-XL-5-W4-179-2015

(6) Van Oosterom, P., Stoter, J., and Lemmen, C., (2005). Modelling of 3D cadastral systems. 28th cadastral seminar, 594-606.

(7) González-Aguilera, D., Crespo-Matellan, E., Hernandez-Lopez D., and Rodríguez-Gonzálvez, P. (2013). Automated Urban Analysis Based on LiDAR-Derived Building Models. IEEE Transactions on Geoscience and Remote Sensing, 51 (3), 1844-1851. https://doi.org/10.1109/TGRS.2012.2205931

(8) Albano, R. (2019). Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Applied Sciences, 9(21), 4674. https://doi.org/10.3390/app9214674

(9) Bonczak, B., and Kontokosta, C. E. (2019). Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data. Computers, Environment and Urban Systems, 73, 126-142. https://doi.org/10.1016/j.compenvurbsys.2018.09.004

(10) Shirowzhan, S., Lim, S., Trinder, J., Li, H., and Sepasgozar, S. M. E. (2020). Data mining for recognition of spatial distribution patterns of building heights using airborne lidar data. Advanced Engineering Informatics, 43, 101033. https://doi.org/10.1016/j.aei.2020.101033

(11) Kaartinen, H. and Hyyppä, J., 2006. Evaluation of building extraction. EuroSDR-project commission 3. Final Report. EuroSDR-European Spatial Data Research. Official Publication. 50, 9-77.

(12) Toschi, I., Ramos, M. M., Nocerino, E., Menna, F., Remondino, F., Moe, K., ... and Fassi, F. (2017). Oblique photogrammetry supporting 3D urban reconstruction of complex scenarios. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1, 519-526. https://doi.org/10.5194/isprs-archives-XLII-1-W1-519-2017

(13) Wu, B., Wu, S., Li, Y., Wu, J., Huang, Y., Chen, Z., and Yu, B. (2020). Automatic building rooftop extraction using a digital surface model derived from aerial stereo images. Journal of Spatial Science, 1-20. https://doi.org/10.1080/14498596.2020.1720836

(14) Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., and Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, Volume 584, 124308. https://doi.org/10.1016/j.jhydrol.2019.124308

(15) Zhang, T., Huang, X., Wen, D., and Li, J. (2017). Urban building density estimation from high-resolution imagery using multiple features and support vector regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(7), 3265-3280. https://doi.org/10.1109/JSTARS.2017.2669217

(16) Remondino, F. and Gerke, M., 2015. Oblique Aerial Imagery -A Review. In D. Fristsch (Ed.), Photogrammetric Week (pp. 75-83).

(17) Remondino, F., Toschi, I., Gerke, M., Nex, F., Holland, D., McGill, A., Talaya Lopez, J., Magarinos A., (2016). Oblique aerial imagery from NMA - Some best practices. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-I/B4, 639-645. https://doi.org/10.5194/isprs-archives-XLI-B4-639-2016

(18) Wu, B., Xie, L., Hu, H., Zhu, Q., and Yau, E. (2018). Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas. ISPRS journal of photogrammetry and remote sensing, 139, 119-132. https://doi.org/10.1016/j.isprsjprs.2018.03.004

(19) Toschi, I., Remondino, F., Rothe, R., and Klimek, K. (2018). Combining Airborne Oblique Camera and Lidar Sensors: Investigation and New Perspectives. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1, 437-444. https://doi.org/10.5194/isprs-archives-XLII-1-437-2018

(20) Toschi, I., Nocerino, E., Remondino, F., Revolti, A., Soria, G., and Piffer, S. (2017). Geospatial Data Processing For 3D City Model Generation, Management and Visualization. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1, 519-526. https://doi.org/10.5194/isprs-archives-XLII-1-W1-519-2017

(21) Rodríguez-Gonzálvez, P., Jiménez Fernández-Palacios, B., Muñoz-Nieto, Á. L., Arias-Sanchez, P., and Gonzalez-Aguilera, D. (2017). Mobile LiDAR system: New possibilities for the documentation and dissemination of large cultural heritage sites. Remote Sensing, 9(3), 189, 17 pp. https://doi.org/10.3390/rs9030189

(22) Toschi, I., Rodríguez-Gonzálvez, P., Remondino, F., Minto, S., Orlandini, S., and Fuller, A. (2015). Accuracy evaluation of a mobile mapping system with advanced statistical methods. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 245-253. https://doi.org/10.5194/isprsarchives-XL-5-W4-245-2015

(23) Bing Maps (6th June 2021). Recovered from: https://www.bing.com/maps

(24) Remondino, F., Spera, M. G., Nocerino, E., Menna, F., and Nex, F. (2014). State of the art in high density image matching. The photogrammetric record, 29(146), 144-166. https://doi.org/10.1111/phor.12063

(25) Brenner, C. (2010). Building Extraction. In H.-G. Mass and George Vosselman (Eds.), Airborne and Terrestrial Laser Scanning (pp. 169-212). Whittles Publishing.

(26) Terrasolid (6th June 2021). Terrasolid Ltd. Recovered from http://www.terrasolid.com/home.php

(27) CloudCompare (6th June 2021). CloudCompare: 3D point cloud and mesh processing software Open Source Project. Recovered from https://www.danielgm.net/cc/

(28) Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., and Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE transactions on geoscience and remote sensing, 41(4), 872-882. https://doi.org/10.1109/TGRS.2003.810682

(29) Rusu, R. B., and Cousins, S., (2011). 3D is here: Point Cloud Library (PCL). IEEE international conference on robotics and automation, 1-4. https://doi.org/10.1109/ICRA.2011.5980567

(30) Gdeisat, M. and Lilley, F., (2012). MATLAB® by Example: Programming Basics. Newnes.

(31) Servizio Catastro Trento (6th June 2021). "Particelle - Poligonali" della Provincia Autonoma di Trento. Recovered from: www.catasto.provincia.tn.it

(32) Nocerino, E., Menna, F., Remondino, F., Toschi, I., and Rodríguez-Gonzálvez, P. (2017, 26 of June). Investigation of indoor and outdoor performance of two portable mobile mapping systems. In Videometrics, Range Imaging, and Applications XIV (pp. 10332oI-1-103320I-15). Munich (Germany): SPIE. https://doi.org/10.1117/12.2270761

Publicado

2021-07-05

Cómo citar

Picon-Cabrera, I. ., Rodríguez-Gonzálvez, P. ., Toschi, I. ., Remondino, F. ., & González-Aguilera, D. . (2021). Reconstrucción de edificios y análisis urbanístico de centros históricos con fotogrametría aérea. Informes De La Construcción, 73(562), e398. https://doi.org/10.3989/ic.79082

Número

Sección

Artículos