Auscultación y prevención de mecanismos secundarios de colapso en puentes históricos en ruinas mediante el uso de valores métricos obtenidos de fotografías de archivo y el análisis geométrico del intradós

Autores/as

  • José Manuel Valle Melón Grupo de Investigación en Patrimonio Construido (GPAC). Departamento de Ingeniería Minera, Metalúrgica y Ciencias de los Materiales. Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) https://orcid.org/0000-0001-6981-0886
  • Álvaro Rodríguez Miranda Grupo de Investigación en Patrimonio Construido (GPAC). Departamento de Matemática Aplicada. Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) https://orcid.org/0000-0002-6961-5543
  • Garbiñe Elorriaga Aguirre Grupo de Investigación en Patrimonio Construido (GPAC). Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) https://orcid.org/0000-0003-3191-4975
  • Beñat García Departamento de Ingeniería Minera, Metalúrgica y Ciencias de los Materiales. Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) https://orcid.org/0000-0002-8925-4677

DOI:

https://doi.org/10.3989/ic.75206

Palabras clave:

auscultación, puente, intradós, fotogrametría

Resumen


El presente texto describe una metodología de control geométrico adaptada a puentes abandonados. Para el establecimiento del estado actual y monitorización de las dinámicas se propone, por un lado, el uso de modelos digitales de elevaciones del intradós del arco ya que este producto permite reflejar de manera conjunta la presencia de un variado elenco de afecciones de una manera sencilla. Por consiguiente, no resulta necesario disponer de un conocimiento previo detallado sobre los mecanismos activos en el puente, resultando una opción apropiada para estudios iniciales en los que la información a este respecto es escasa. Por otro lado, se analiza el valor de las fotografías antiguas para trazar procesos que se desarrollan durante periodos largos de tiempo, en concreto, se muestra como ejemplo la evolución a través de la comparación con fotografías de hace 50 y 30 años.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Ministerio de Fomento (2009). Guía de inspecciones básicas de obras de paso. Madrid: Ministry of Public Works and Transport.

(2) Ministerio de Fomento, (2012). Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Madrid: Ministry of Public Works and Transport.

(3) Plasencia-Lozano, P. (2014). Puentes, sociedad e ingeniería. Informes de la Construcción, 66 (535), e032. https://doi.org/10.3989/ic.13.041

(4) Martin, M.A., Moya, J.G. (1972). El puente de Mantible. Estudios de Arqueología Alavesa, 5, 165-182.

(5) Moreno Gallo, I. (2004). ¿Es romano el puente Mantible? Piedra y Rayo, 12: 66-72.

(6) Azkarate, A., Palacios, V. (1996). Arabako Zubiak = Puentes de Álava. Vitoria-Gasteiz: Eusko Jaurlaritza-Gobierno Vasco.

(7) Arrúe, B., Moya, J.G. (1998). Catálogo de puentes anteriores a 1800. La Rioja. Logroño: Instituto de Estudios Riojanos, Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Centro de Estudios Históricos de Obras Públicas y Urbanismos (CEHOPU), Ministerio de Fomento.

(8) Gómez, A. (1857). Logroño y sus alrededores. Descripción de los edificios principales, ruinas, muros y demás notable que la ciudad encierra. Logroño: Domingo Ruiz. Retrieved from: https://bvpb.mcu.es/es/consulta/registro.do?id=401983

(9) LDGP -Laboratorio de Documentación Geométrica del Patrimonio- (2017). Documentación geométrica del puente de Mantible, Logroño (La Rioja) y Laguardia (Álava). Laboratorio de Documentación Geométrica del Patrimonio (UPV/EHU). http://hdl.handle.net/10810/34923

(10) Carbonnell, M. (1989). Photogrammétrie appliquée aux relevés des monuments et des centres historiques = Photogrammety applied to surveys of monuments and historic centres. Rome: ICCROM.

(11) Mas-Guindal, A.J. (1992). Los métodos informáticos en el diagnóstico de edificios antiguos: el Acueducto de Segovia. Madrid: Ministerio de Cultura.

(12) Di Giacomo, G., Limoncelli, M., Scardozzi, G. (2013). Rilievo e ricostruzione virtuale del Ponte Sud di Hierapolis di Frigia (Turchia). Virtual Archaeology Review (VAR), 4(8), 20-24. https://doi.org/10.4995/var.2013.4281

(13) Méndez-Hernán, V., Plasencia-Lozano, P. (2017). A methodology for the analysis of historical bridges, applied to the Jaraicejo Bridge. History and evolution of construction phases. Informes de la Construcción, 69(545), e183. https://doi.org/10.3989/ic.15.121

(14) Morer, P., de Arteaga, I., Armesto, J., Arias, P. (2011). Comparative structural analyses of masonry bridges: an application to the Cernadela bridge. Journal of Cultural Heritage, 12, 300-309. https://doi.org/10.1016/j.culher.2011.01.006

(15) Lu, N., Wang, Q., Wang, S., Zhang, R. (2015). The application of 3D laser scanning in the survey and measuring of Guyue bridge of Song Dinasty in Yiwu city. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. II-5/W3, 185-190. https://doi.org/10.5194/isprsannals-II-5-W3-185-2015

(16) Pizzo, A. (2016). El puente romano de Alcántara: nueva documentación arqueológica y evidencias constructivas previas. Arqueología de la Arquitectura, 13, e038. https://doi.org/10.3989/arq.arqt.2016.023

(17) Conde, B., Díaz-Vilariño, L., Lagüela, S., Arias, P. (2016). Structural analysis of Monforte de Lemos masonry arch bridge considering the influence of the geometry of the arches and fill material on the collapse load estimation. Construction and Building Materials, 120, 630-642. https://doi.org/10.1016/j.conbuildmat.2016.05.107

(18) Riveiro, B., DeJong, M.J., Conde, B. (2016). Automated processing of large point clouds for structural health monitoring of masonry arch bridges. Automation in Construction, 72, 258-268. https://doi.org/10.1016/j.autcon.2016.02.009

(19) Lubowiecka, I., Armesto, J., Arias, P., Lorenzo, H. (2009). Historic bridge modeling using laser scanning, ground penetrating radar and finite element method in the context of structural dynamics. Engineering Structures, 31, 2667-2676. https://doi.org/10.1016/j.engstruct.2009.06.018

(20) Solla, M., Lorenzo, H., Novo, A., Caamaño, J.C. (2012). Structural analysis of the Roman Bibei bridge (Spain) based on GPR data and numerical modelling. Automation in Construction, 22, 334-339. https://doi.org/10.1016/j.autcon.2011.09.010

(21) Bruno, N., Coïsson, E., Diotri, F., Ferrari, L. Mikolajewska, S., Morra di Cella, U., Roncella, R., Zerbi, A. (2019). History, geometry, structure: interdisciplinary analysis of a historical bridge. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. XLII-2/W11, 317-323. https://doi.org/10.5194/isprs-archives-XLII-2-W11-317-2019

(22) Barazzetti, L., Banfi, F., Brumana, R.; Previtali, M., Roncoroni, F. (2016). BIM from laser scans... not just for buildings: NURBS-based parametric modeling of a medieval bridge. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. III-5, 51-56. https://doi.org/10.5194/isprsannals-III-5-51-2016

(23) Riveiro, B., Solla, M., de Arteaga, I., Arias, P., Morer, P. (2013). A novel approach to evaluate masonry arch stability on the basis of limit analysis theory and non-destructive geometric characterization. Automation in Construction, 31, 140-148. https://doi.org/10.1016/j.autcon.2012.11.035

(24) Gonen, H., Dogan, M., Karacasu, M., Ozbasaran, H., Gokdemir, H. (2013). Structural failures in refrofit historical murat masonry arch bridge. Engineering Failure Analysis, 35, 334-342. https://doi.org/10.1016/j.engfailanal.2013.02.024

(25) Conde, B., Ramos, L.F., Oliveira, D.V., Riveiro, B., Solla, M. (2017). Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Engineering Structures, 148, 621-638. https://doi.org/10.1016/j.engstruct.2017.07.011

(26) Rafiee, A., Vinches, M. (2013). Mechanical behavior of a stone masonry bridge assessed using an implicit discrete element method. Engineering Structures, 48, 739-749. https://doi.org/10.1016/j.engstruct.2012.11.035

(27) Núñez-Andrés, M.A., Buill, F., Costa-Jover, A., Puche, J.M. (2017). Structural assessment of the Roman wall and vaults of the cloister of Tarragona Cathedral. Journal of Building Engineering, 13, 77-86. https://doi.org/10.1016/j.jobe.2017.07.007

(28) Rizzi, E., Rusconi, F., Cocchetti, G. (2014). Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Engineering Structures, 60, 241-257. https://doi.org/10.1016/j.engstruct.2013.12.023

(29) Cavalagli, N., Gusella, V., Severini, L. (2016). Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches. International Journal of Mechanical Sciences, 115-116, 645-656. https://doi.org/10.1016/j.ijmecsci.2016.07.015

(30) Conde, B., Drosopoulos, G.A., Stavroulakis, G.E., Riveiro, B., Stawroulaki, M.E. (2016). Inverse analysis of masonry arch bridges for damaged condition investigation: Application on Kakodiki bridge. Engineering Structures, 127, 388-401. https://doi.org/10.1016/j.engstruct.2016.08.060

(31) Fortea Luna, M. (2019). Informe de evaluación de cargas, diagnóstico y propuesta de actuación y consolidación estructural del Puente de Mantible, Logroño. Vault Zafra (architectural studio). Technical report committed by the city council of Logroño.

(32) Mugnai, F., Lombardi, L., Tucci, G., Nocentini, M., Gigli, G., Fanti, R. (2019). Geomatics in bridge structural health monitoring, integrating terrestrial laser scanning techniques and geotechnical inspections on a high value cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. XLII-2/W11, 895-900. https://doi.org/10.5194/isprs-archives-XLII-2-W11-895-2019

(33) Soni, A., Robson, S., Gleeson, B. (2015). Structural monitoring for the rail industry using conventional survey, laser scanning and photogrammetry. Applied Geomatics, 7, 123-138. https://doi.org/10.1007/s12518-015-0156-1

(34) Huerta. S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496), 73-89. https://doi.org/10.3989/ic.2005.v57.i496.496

(35) Acikgoz, S., Soga, K., Woodhams, J. (2017). Evaluation of the response of a vaulted masonry structure to differential settlements using point cloud data and limit analyses. Construction and Building Materials, 150, 916-931. https://doi.org/10.1016/j.conbuildmat.2017.05.075

(36) Lluis I Ginovart, J., Coll-Pla, S., Costa-Jover, A., López Piquer, M. (2017). Evaluation of large deformations on Romanesque masonry pillars: The case of Santa María de Arties (XII-XIII) at Valle de Arán, Spain. Revista de la Construcción. Journal of Construction, 16(3), 468-478. https://doi.org/10.7764/RDLC.16.3.468

(37) Zampieri, P.; Zanini, P.A., Faleschini, F., Hofer, L., Pellegrino, C. (2017). Failure analysis of masonry arch bridges subject to local pier scour. Engineering Failure Analysis, 79, 371-384. https://doi.org/10.1016/j.engfailanal.2017.05.028

(38) Teza, G., Pesci, A. (2013). Geometric characterization of a cylinder-shaped structure from laser scanner data: development of an analysis tool and its use on a leaning bell tower. Journal of Cultural Heritage, 14, 411-423. https://doi.org/10.1016/j.culher.2012.10.015

(39) Camp. G., Carreaud, P., Lançon, H. (2013). Large structures : wich solutions for health monitoring? The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. XL-5/W2, 137-141. https://doi.org/10.5194/isprsarchives-XL-5-W2-137-2013

(40) Markiewicz, J., Zawieska, D., Podlasiak, P. (2017). Comparing multi-source photogrammetric data during the examination of verticality in a monumental tower. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. XLII-2/W3, 475-480. https://doi.org/10.5194/isprs-archives-XLII-2-W3-475-2017

(41) Kouimtzoglou, T., Stathopoulou, E. K., Agrafiotis, P., Georgopoulos, A. (2017). Image-based 3D reconstruction data as an analysis and documentation tool for architects: The case of Plaka bridge in Greece. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. XLII-2/W3, 391-397. https://doi.org/10.5194/isprs-archives-XLII-2-W3-391-2017

(42) Maiwald, F. (2019). Generation of a benchmark dataset using historical photographs for an automated evaluation of different feature matching methods. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. XLII-2/W13, 87-94. https://doi.org/10.5194/isprs-archives-XLII-2-W13-87-2019

(43) Williamson, J.R., Brill, M.H. (1990). Dimensional analysis through perspective. A reference manual. Dubuque (Iowa): American Society for Photogrammetry and Remote Sensing.

(44) Rodríguez Miranda, A.; Valle Melón, J.M. 2017. Recovering old stereoscopic negatives and producing digital 3D models of former appearances of historic buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W3), 601-609. https://doi.org/10.5194/isprs-archives-XLII-2-W3-601-2017

(45) CIOMAR (2019). Informe de inmersión: inspección de la base de la pila norte del arco de la margen derecha del puente de Mantible. Technical report committed by the city council of Logroño.

Publicado

2021-07-12

Cómo citar

Valle Melón, J. M. ., Rodríguez Miranda, Álvaro ., Elorriaga Aguirre, G. ., & García, B. . (2021). Auscultación y prevención de mecanismos secundarios de colapso en puentes históricos en ruinas mediante el uso de valores métricos obtenidos de fotografías de archivo y el análisis geométrico del intradós. Informes De La Construcción, 73(562), e391. https://doi.org/10.3989/ic.75206

Número

Sección

Artículos