Active bending in plywood floor structures with in-plane curvature

Authors

DOI:

https://doi.org/10.3989/ic.91082

Keywords:

active bending, lauan, plywood, floor frame, structural efficiency, Bic-lambda

Abstract


Active bending structures incorporate curved beams or shells that are elastically bent from originally straight or flat elements. When both curved and straight elements are coupled, systems stiffness can be enhanced for certain load cases. In this paper, the effects of active bending in twelve floor structure proposals constructed from curved and straight plywood elements is discussed. These solutions are numerically analysed and compared with the reference solution of straight and parallel joists in a Bic-λ diagram, the instrument devised by Frei Otto to compare the material consumption of different structural systems. Simultaneously to the analytical study, three-point bending tests of two full-scale prototypes are carried out. Based on tests findings, a new case of joist with more elements is introduced, which will eventually be the most efficient.

Downloads

Download data is not yet available.

References

(1) Lienhard, J.; Schleicher, S.; Knippers, J. (2011). Bending-active Structures - Research Pavilion ICD/ITKE. Taller, longer, lighter. Proceedings of the International Symposium of the IABSE-AISS Symposium, London, UK, 2011. London: Nethercot,D., Pellegrino, S. et al. (eds).

(2) Lienhard, J.; Alpermann, H.; Gengnagel, C.; Knippers, J. (2012). Active bending, a review on structures where bending is used as a self-formation process. International Journal of Space Structures, 28, 187-196. https://doi.org/10.1260/0266-3511.28.3-4.187

(3) Ochsenschlager, E. (1998). Life on the edge of the marshes. Expedition 40 (2): 29-40. Philadelphia: University of Pennsylvania, Museum of Archaelogy and Anthropology.

(4) Émy, A.R. (1837). Traité de l'art de la Charpenterie. Anselin libraire. Paris, France.

(5) Happold, E. and Liddell, I. (1975). Timber lattice roof for Mannheim Bundesgartenschau. The Structural Engineer, 3, Volume March 1975, 99-135.

(6) Otto, F. et al. (1998). IL 24 - Lightweight principle. Stuttgart: Institute for Lightweight Structures. Germany.

(7) Schaur, E. (1979). IL 21 - Basics: Form-Force-Mass. Stuttgart: Institute for Lightweight Structures. Germany.

(8) Otto, F. (1985). Konzepte SFB 230. Stuttgart: Institute for Lightweight Structures. Germany

(9) Kull, U.; Herbig, A.; Otto, F. (1992). Construction and Economy of Plant Stems as Revealed by Use of the Bic-method. Annals of Botany 69, 327,334. University of Oxford. England. https://doi.org/10.1093/oxfordjournals.aob.a088349

(10) Otto, F. (1968). Biotechnik-7. Natur und Leichtbau, Vergleich der Konstruction. DIA Ausstellungstafeln, Berlin. Germany.

(11) García Santabárbara, A., Cervera Bravo, J. (2017). Conceptos para la cuantificación del consumo estructural y su aplicación a estructuras generadas por elementos preflectados. Informes de la Construcción, 69(546), e201. https://doi.org/10.3989/ic.16.016

(12) Gengnagel, C.; Alpermann, H.; Lafuente, E. (2014). Active Bending in Hybrid Structures. FORM - RULE | RULE - FORM 2013. Innsbruck University Press. Germany.

(13) Lienhard, J. (2014). Bending-Active Structures. Form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein. (doctoral thesis). Universität Stuttgart, Germany.

(14) Forest Product Laboratory (1999). Wood handbook - Wood as an engineering material. F.P.L. Madison, Wisconsin. https://doi.org/10.2737/FPL-GTR-113

(15) Paradis et al. (2015). Tropix 7 (consulted version 7.5.1.) CIRAD. France.

(16) JAS (Japanese Agricultural Standard). Structural plywood standard. Japan's Ministry of Agriculture, Forestry and Fisheries

(17) Bathe, K. (1996). Finite Element Procedures. Prentice Hall. New Jersey, USA.

(18) EN 1995-1-1:2004. Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings.

(19) Johnsson, H. (2004). Plug shear failure in nailed timber connection. Avoiding brittle and promoting ductile failures (doctoral thesis). Luleå University of Technology. Luleå, Sweden. https://doi.org/10.1007/s00107-004-0523-9

Published

2022-11-17

How to Cite

García Santarbárbara, A. ., Monjo Carrió, J. ., Sakata, H. ., & Sastre Sastre, R. . (2022). Active bending in plywood floor structures with in-plane curvature. Informes De La Construcción, 74(568), e473. https://doi.org/10.3989/ic.91082

Issue

Section

Research Articles

Funding data

European Commission
Grant numbers 2012-5538/004-001