The Influence of the Exterior Temperature on natural Venting Systems in Large Atria
DOI:
https://doi.org/10.3989/ic.2008.v60.i511.746Keywords:
smoke, atrium, natural venting, temperatureAbstract
Natural venting systems present numerous advantages opposite to the mechanical exhaust for the smoke control – a reduction in both facilities and maintenance costs–. Nevertheless, the influence of numerous factors affects significantly their efficacy: the architectural characteristics of the building, the direction and wind velocity, the proximity of tall buildings, the smoke temperature, the environmental interior and exterior temperatures, the existence of snow or ice on the ceiling, etc. All of them are important, but the influence of the environmental exterior temperature plays a decisive role. The goal of this Investigation Research was to evaluate the influence of the external temperature on the smoke movement and the hot layer descent regarding the efficacy of the natural venting systems installed for the smoke control in large atria. The analysis was developed using the ‘Fire Dynamics Simulator - FDS’ model (1), a computational fluid dynamics (CFD) model of fi re-driven fluid flow for the study of fire. The results demonstrated that a design that does not contemplate this factor can turn out to be inadequate, since it has a decisive influence to guarantee human safety. The obtained results showed very significant differences about the different parameters linked to the smoke movement in an atrium.
Downloads
References
(1) McGrattan, K. “Fire Dynamics Simulator (Version 4.07) – Technical Reference Guide”, p. 112, National Institute of Standards and Technology (NIST). Gaisthersburg (Maryland), 2006.
(2) J.H. Klote, J.A.Milke. “Principles of Smoke Management”. p. 207. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Society of Fire Protection Engineers. Atlanta, 2002.
(3) Morton, B.R., Taylor, G., Turner, J.S. “Turbulent Gravitational Convection from Maintained and Instantaneus Sources”. Proceeding of the Royal Society of London, Vol. 234 (1956), pp. 1-23.
(4) B.M. Cetegan, E.E. Zukoski, T. Kubota. “Entrainment and Flame Geometry of Fire Plumes”, p. 203, Ph.D Tesis of Cetegan. California Institute of Technology. Pasadena, 1982.
(5) McCaffrey, B.J. “Momentum Implications for Buoyant Diffusion Flames”. Combustion and Flame, Vol. 52, Nº 2 (1983), pp. 149-167. doi:10.1016/0010-2180(83)90129-3
(6) Heskestad, G. “Engineering Relations for Fire Plumes”. Fire Safety Journal, Vol. 7, Nº 1 (1984), pp. 25-32. doi:10.1016/0379-7112(84)90005-5
(7) UNE 23585, “Sistemas de control de temperatura y evacuación de humos (SCTEH). Requisitos y métodos de cálculo y diseño para proyectar un sistema de control de temperatura y evacuación de humos en caso de incendio”. AENOR. 2004.
(8) Edition.Fire Precautions in the design, constructions and use of buildings. British Standar BS-5588. 1997.
(9) Protection incendie dans les bâtiments - Conception et calcul des installations d’évacuation de fumées et de chaleur (EFC). NBN.S.21-208-1. 1995.
(10) NFPA 92B: Guide for Smoke Management Systems in Malls, Atria, and Larges Area. National Fire Protection Association (NFPA), 2000.
(11) J.A. Capote et al. “Estudio sobre las Tendencias en la Evolución y Transformación en la Construcción y Arquitectura Industrial de las Estaciones Ferroviarias y su Integración en el Espacio Urbano”. Grupo GIDAI. Universidad de Cantabria. Santander, 2003.
(12) Beall, K.A. (ed.), “Thirteenth Meeting of the UJNR Panel of Fire Research and Safety, Volume 1”. National Institute of Standards and Technology (NIST), Gaisthersburg (Maryland), 1997.
(13) Koffel, W.E. “Performance Based Design Analysis Seattle Transportation Center”, National Institute of Standards and Technology, NIST. Fifth International Conference on Performance- Based Codes and Fire Safety Design Methods, Luxembourg, 2004.
(14) J.A. Capote et al. “Modelado del Movimiento y Conducta Humana en caso de Emergencia en Edificios singulares”, Americas Fire and Security Expo. Miami, 2008
(15) Código Técnico de la Edificación (CTE). Ministerio de Vivienda, 2006.
(16) J.H. Klote. “Method of Predicting Smoke Movement in Atria with Application to Smoke Management“, p. 94, Building and Fire Research Laboratory. National Institute of Standards and Technology (NIST), NISTIR 5516, Gaisthersburg (Maryland), 1994.
(17) J.A. Capote et al. “Informe Resumen de la Investigación 8. Estudio del Movimiento de los Humos en caso de Incendio en Grandes Atrios de Estaciones Ferroviarias de Pasajeros mediante Modelado y Simulación Computacional”, p. 149, Servicio de Publicaciones de la Universidad de Cantabria.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.