Equilibrium problems in membrane structures with rigid boundaries

Authors

  • G. Viglialoro Centro de Supercomputación de Galicia (CESGA)
  • J. Murcia Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC)
  • F. Martínez Universidad Politécnica de Cataluña

DOI:

https://doi.org/10.3989/ic.08.038

Keywords:

membrane, footbridge, rigid boundary, eliptic problem, hyperbolic problem

Abstract


This paper presents the equilibrium analysis of a membrane with rigid boundary. The idea of using membranes in applications such as footbridges, a new technology being developed in Spain, implies a more accurate analysis procedure. Due to the tension stresses, membrane is identifi ed to a negative gaussian curvature surface. Equilibrium is directly expressed by means of partial differential equations, in terms of the membrane shape and stress tensor. Starting from these equations, two dual approaches can be defi ned, namely direct problem and dual problem. Both problems are analyzed, studying their possible solutions in order to obtain practical results. In particular, the main analytical aspects of the direct problem are discussed, a numerical resolution procedure is proposed and, fi nally, analytical and numerical solution examples are presented.

Downloads

Download data is not yet available.

References

(1) Bonet J., Mahaney J., 2001. Form fi nding of membrane structures by updated reference method with minimum mesh distortion. International Journal of Solids and Structures, Vol. 38, pp. 5469 - 5480. doi:10.1016/S0020-7683(00)00382-6

(2) Brezis H., 1983. Analyse functionnelle. Théorie et applications, Masson Editeur, París.

(3) Flugge W., 1973. Stresses in Shells, 2nd ed., Springer-Verlag, New York.

(4) Gilbarg L., Trudinger N. S., 1998. Elliptic Partial Differential Equations of Second Order, Springer.

(5) Haas L.M. 1964. Disign of Thin Shells. Wiley, New York.

(6) Hörmander L, 1964 Linear Partial Differential Operators. Springer, Berlin.

(7) Hughes T.J.R., 1987. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis; Mineola, New York Dover Publications.

(8) Linkwitz K., 1999. About formfi nding of double-curved structures. Engineering Structures; Vol. 21, pp. 709 - 718. doi:10.1016/S0141-0296(98)00025-X

(9) Murcia J., 2007. Tecnología de pasarelas con estructura de membrana. Informes de la Construcción; No. 507; 21 - 31.

(10) Timoshenko S., Woinowsky-Krieger S., 1959. Theory of Plates and Shells. McGraw-Hill, Inc., New York.

(11) Tüzel V.H., Erbay H.A., 2004. The dynamic response of an incompressible nonlinearly elastic membrane tube subjected to a dynamic extension. International Journal of Non-Linear Mechanics; Vol. 39, pp. 515 - 537. doi:10.1016/S0020-7462(02)00220-2

(12) Viglialoro G., 2006. Análisis matemático del equilibrio en estructuras de membrana con bordes rígidos y cables. Pasarelas: forma y pretensado. Tesis doctoral, UPC. Enlace: http://www.tesisenxarxa.net/TDX-0515107-100745/.

(13) Zienkiewicz O. C., Taylor R. L., 2000. The Finite Element Method, Butterworth Heinemann.

Downloads

Published

2009-12-30

How to Cite

Viglialoro, G., Murcia, J., & Martínez, F. (2009). Equilibrium problems in membrane structures with rigid boundaries. Informes De La Construcción, 61(516), 57–66. https://doi.org/10.3989/ic.08.038

Issue

Section

Research Articles