La construcción del Alcázar de Sevilla. Replanteo, cimentaciones y murallas fundacionales

Autores/as

DOI:

https://doi.org/10.3989/ic.78484

Palabras clave:

Taifa, emplecton, sillería, cimientos

Resumen


La realización de diferentes excavaciones arqueológicas y estudios murarios en los últimos años en el alcázar de Sevilla han permitido clarificar el proceso de obras que se desarrolló durante el siglo XI y supuso el punto de arranque para la erección de uno de los mayores complejos militares y palatinos del período andalusí. Este trabajo describe el proceso, desde el planteamiento inicial de las obras hasta la terminación de las torres y lienzos, con especial énfasis en el replanteo y la ejecución de los cimientos. Se han obtenido dataciones absolutas que permiten, superadas las polémicas tradicionales sobre su cronología, definir un cronotipo arquitectónico extrapolable o comparable a partir de ahora con otros casos aun por investigar del mismo período.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Parastesh, H., Hajirasouliha, I., Taji, H., & Bagheri Sabbagh, A. (2019). Shape optimization of cold-formed steel beam-columns with practical and manufacturing constraints. Journal of Constructional Steel Research, 155, 249-259. https://doi.org/10.1016/j.jcsr.2018.12.031

(2) Karim, A., & Adeli, H. (2000). Global Optimum Design of Cold-Formed Steel I-Shape Beams. Practice Periodical on Structural Design and Construction, 5(2), 78-81. https://doi.org/10.1061/(ASCE)1084-0680(2000)5:2(78)

(3) Magnucki, K., & Magnucka-Blandzi, E. (1999). Variational design of open cross-section thin-walled beam under stability constraints. Thin-Walled Structures, 35(3), 185-191. https://doi.org/10.1016/S0263-8231(99)00031-2

(4) Magnucki, K., & Paczos, P. (2009). Theoretical shape optimization of cold-formed thin-walled channel beams with drop flanges in pure bending. Journal of Constructional Steel Research, 65(8-9), 1731-1737. https://doi.org/10.1016/j.jcsr.2009.03.010

(5) Vinot, P., Cogan, S., & Piranda, J. (2001). Shape optimization of thin-walled beam-like structures.

(6) Anapayan, T., Mahendran, M., & Mahaarachchi, D. (2011). Lateral distortional buckling tests of a new hollow flange channel beam. Thin-Walled Structures, 49(1), 13-25. https://doi.org/10.1016/j.tws.2010.08.003

(7) Magnucka-Blandzi, E., & Magnucki, K. (2011). Buckling and optimal design of cold-formed thin-walled beams: Review of selected problems. Thin-Walled Structures, 49(5), 554-561. https://doi.org/10.1016/j.tws.2010.09.011

(8) K.S. Wanniarachchi, M. Mahendran, Experimental study of the section moment capacity of cold-formed and screw-fastened rectangular hollow flange beams, Thin-Walled Structures, Volume 119, 2017, Pages 499-509.

(9) Li, Z., Leng, J., Guest, J. K., & Schafer, B. W. (2016). Two-level optimization for a new family of cold-formed steel lipped channel sections against local and distortional buckling. Thin-Walled Structures, 108, 64-74. https://doi.org/10.1016/j.tws.2016.07.004

(10) Tran, T., & Li, L. yuan. (2006). Global optimization of cold-formed steel channel sections. Thin-Walled Structures, 44(4), 399-406. https://doi.org/10.1016/j.tws.2006.04.007

(11) Magnucki, K., Maćkiewicz, M., & Lewiński, J. (2006). Optimal design of a mono-symmetrical open cross section of a cold-formed beam with cosinusoidally corrugated flanges. Thin-Walled Structures, 44(5), 554-562. https://doi.org/10.1016/j.tws.2006.04.016

(12) Pala, M., & Caglar, N. (2007). A parametric study for distortional buckling stress on cold-formed steel using a neural network. Journal of Constructional Steel Research, 63(5), 686-691. https://doi.org/10.1016/j.jcsr.2006.07.005

(13) Wan, H. X., & Mahendran, M. (2015). Behaviour and strength of hollow flange channel sections under torsion and bending. Thin-Walled Structures, 94, 612-623. https://doi.org/10.1016/j.tws.2015.05.013

(14) Ayhan, D., & Schafer, B. W. (2015). Cold-formed steel member bending stiffness prediction. Journal of Constructional Steel Research, 115, 148-159. https://doi.org/10.1016/j.jcsr.2015.07.004

(15) Anbarasu, M., & Ashraf, M. (2017). Interaction of local-flexural buckling for cold-formed lean duplex stainless steel hollow columns. Thin-Walled Structures, 112, 20-30. https://doi.org/10.1016/j.tws.2016.12.006

(16) Kurniawan, C. W., & Mahendran, M. (2009). Elastic lateral buckling of simply supported LiteSteel beams subject to trans-verse loading. Thin-Walled Structures, 47(1), 109-119. https://doi.org/10.1016/j.tws.2008.05.012

(17) Perera, N., & Mahendran, M. (2019). Finite element analysis and design for section moment capacities of hollow flange steel plate girders. Thin-Walled Structures, 135, 356-375. https://doi.org/10.1016/j.tws.2018.10.014

(18) Chen, D. H., & Masuda, K. (2016). Rectangular hollow section in bending: Part I - Cross-sectional flattening deformation. Thin-Walled Structures, 106, 495-507. https://doi.org/10.1016/j.tws.2015.12.019

(19) Hassan, E. M., Serror, M. H., & Mourad, S. A. (2017). Numerical prediction of available rotation capacity of cold-formed steel beams. Journal of Constructional Steel Research, 128, 84-98. https://doi.org/10.1016/j.jcsr.2016.08.010

(20) Siahaan, R., Mahendran, M., & Keerthan, P. (2016). Section moment capacity tests of rivet fastened rectangular hollow flange channel beams. Journal of Constructional Steel Research, 125, 252-262. https://doi.org/10.1016/j.jcsr.2016.06.021

(21) Becque, J., & Rasmussen, K. J. R. (2009). Numerical Investigation of the Interaction of Local and Overall Buckling of Stainless Steel I-Columns. Journal of Structural Engineering, 135(11), 1349-1356. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000052

(22) Sadowski, A. J., & Rotter, M. J. (2013). On the relationship between mesh and stress field orientations in linear stability analyses of thin plates and shells. Finite Elements in Analysis and Design, 73, 42-54. https://doi.org/10.1016/j.finel.2013.05.004

(23) Schafer, B. W., Li, Z., & Moen, C. D. (2010). Computational modeling of cold-formed steel. Thin-Walled Structures, 48(10-11), 752-762. https://doi.org/10.1016/j.tws.2010.04.008

(24) Dubina, D., Ungureanu, V., & Landolfo, R. (2013). Design of Cold-formed Steel Structures: Eurocode 3: Design of Steel Structures. Part 1-3 Design of Cold-formed Steel Structures.

(25) Huang, Y., & Young, B. (2013). Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members. Thin-Walled Structures, 73, 216-228. https://doi.org/10.1016/j.tws.2013.07.019

(26) British Standards Institution. (2005). Eurocode 3: Design of steel structures. London: BSI.

(27) Camotim, D., Silvestre, N., Gonçalves, R., & Dinis, P. B. (2006). GBT-based Structural Analysis of Thin-walled members: Overview, Recent Progress and Future Developments. In M. Pandey, W.-C. Xie, & L. Xu (Eds.), Advances in Engineering Structures, Mechanics & Construction (Vol. 140, pp. 187-204). Springer Netherlands. https://doi.org/10.1007/1-4020-4891-2_16

(28) Dassault Systèmes. (2016). Abaqus 2016 Documentation. © Dassault Systemes.

(29) Lee, J., Kim, S. M., & Seon Park, H. (2006). Optimum design of cold-formed steel columns by using micro genetic algorithms. Thin-Walled Structures, 44(9), 952-960. https://doi.org/10.1016/j.tws.2006.08.021

Publicado

2021-09-03

Cómo citar

Tabales Rodríguez, M. Ángel ., & Gurriarán Daza, P. . (2021). La construcción del Alcázar de Sevilla. Replanteo, cimentaciones y murallas fundacionales. Informes De La Construcción, 73(563), e400. https://doi.org/10.3989/ic.78484

Número

Sección

Artículos

Datos de los fondos

Ministerio de Economía y Competitividad
Números de la subvención HAR2017-85182-P