Detección de fallas en tiempo real por medio de la integración de sensores de información en BIM

Autores/as

DOI:

https://doi.org/10.3989/ic.85699

Palabras clave:

Modelos de Edificios e Información Virtual, BIM, Sensores IoT, Detección de Fallas, Manejo de Sistemas Operativos de Edificios, Gerentes de Instalaciones, Revit API

Resumen


Una herramienta prototipo-de-visualización-BIM Adafruit-IO-Reader-(AIOR), fue desarrollada para intervenir al instante, transfiriendo información crítica al programa de Revit diseñado por Autodesk. Una vez transferida la información es retribuida por medio de la computadora de Adafruit-IO y traducida como base de datos o gráficas lineales. AIOR es de bajo costo y pertenece a los sensores de datos del Internet of Things-(IoT). Los usuarios son guiados visualmente a los sensores correspondientes en Revit. El algoritmo de detección de fallas se basa en los niveles de comodidad establecidos por el ASHRAE-55-2017. El algoritmo localiza los sensores con valores anormales y los marca con diferentes colores en imágenes tridimensionales. El contribuidor clave para es el sensor de datos es visible dentro de un programa de BIM. La información puede ser comparada con los datos establecidos por el ASHRAE-55 y el sistema de alerta es visualizado en Revit cuando estos valores están fuera de los estándares establecidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) National BIM Standard - United States. APEC Meeting Document Database. Accessed March 6, (2019). Retrieved from http://mddb.apec.org/Documents/2013/SCSC/WKSP5/13_scsc_wksp5_007.pdf.

(2) Hosseini, M.R., Roelvink, R., Papadonikolaki, E., Edwards, D.J. and Pärn, E., (2018). Integrating BIM into facility management. International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/IJBPA-08-2017-0034

(3) Matarneh, S.T., Danso-Amoako, M., Al-Bizri, S., Gaterell, M. and Matarneh, R. (2018). Developing an interoperability framework for building information models and facilities management systems. In Creative Construction Conference 2018 (pp. 1018-1027). Diamond Congress Ltd. https://doi.org/10.3311/CCC2018-132

(4) Sensor analytics. IoT Agenda. Accessed March 6, (2019). https://internetofthingsagenda.techtarget.com/definition/ sensor-analytics

(5) Liu, X. and Akinci, B. (2009). Requirements and evaluation of standards for integration of sensor data with building information models. In Computing in Civil Engineering (pp. 95-104). https://doi.org/10.1061/41052(346)10

(6) Suprabhas, K. and Dib, H.N. (2017). Integration of BIM and utility sensor data for facilities management. In Computing in Civil Engineering (pp. 26-33). https://doi.org/10.1061/9780784480823.004

(7) Chen, J., Bulbul, T., Taylor, J.E. and Olgun, G. (2014). A case study of embedding real-time infrastructure sensor data to BIM. In Construction Research Congress 2014: Construction in a Global Network (pp. 269-278). https://doi.org/10.1061/9780784413517.028

(8) Love, P.E., Matthews, J., Lockley, S., Kassem, M., Kelly, G., Dawood, N. and Serginson, M. (2015). BIM in facilities management applications: a case study of a large university complex. Built Environment Project and Asset Management.

(9) Yang, X., Koehl, M. and Grussenmeyer, P. (2017). Parametric modelling of as-built beam framed structure in BIM environment. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/ W3, 651-657. https://doi.org/10.5194/isprs-archives-XLII-2-W3-651-2017

(10) Teicholz, P. ed. (2013). BIM for facility managers. John Wiley & Sons. https://doi.org/10.1002/9781119572633

(11) Teicholz, E. (2001). Facility design and management handbook. McGraw Hill Professional.

(12) Riaz, Z., Arslan, M., Kiani, A.K. and Azhar, S. (2014). CoSMoS: A BIM and wireless sensor based integrated solution for worker safety in confined spaces. Automation in construction, (45): 96-106. https://doi.org/10.1016/j.autcon.2014.05.010

(13) Ozturk, Z., Arayici, Y. and Coates, S.P. (2012). Post occupancy evaluation (POE) in residential buildings utilizing BIM and sensing devices: Salford energy house example.

(14) Shiau, Y.C. and Chang, C.T. (2012). Establishment of fire control management system in building information modelling environment. In The 1st International Conference on Software Technology.

(15) Razavi, S.N. and Haas, C. (2009). A data fusion model for location estimation in construction. In Proc, the International Symposium for Automation and Robotics in Construction (ISARC). https://doi.org/10.22260/ISARC2009/0004

(16) Lee, G., Cho, J., Ham, S., Lee, T., Lee, G., Yun, S.H. and Yang, H.J. (2012). A BIM-and sensor-based tower crane navigation system for blind lifts. Automation in construction, (26): 1-10. https://doi.org/10.1016/j.autcon.2012.05.002

(17) Dawes, N., Kumar, K.A., Michel, S., Aberer, K. and Lehning, M. (2008). Sensor metadata management and its application in collaborative environmental research. In 2008 IEEE Fourth International Conference on eScience (pp. 143-150). IEEE. https://doi.org/10.1109/eScience.2008.27

(18) Hu, J. and Patel, M., 2014. Optimized selection and placement of sensors using building information models (BIM). In IES Annual Conference.

(19) Kazado, D., Kavgic, M. and Eskicioglu, R. (2019). Integrating Building Information Modeling (BIM) and sensor technology for Facility Management. Journal of Information Technology in Construction (ITcon), 24(23): 440-458.

(20) Autodesk Dasher 360. Autodesk. Accessed March 18, 2019. https://dasher360.com/

(21) Penna, P., Regis, G.L., Schweigkofler, A., Marcher, C. and Matt, D., 2019, October. From Sensors to BIM: Monitoring Comfort Conditions of Social Housing with the KlimaKit Model. In International Conference on Cooperative Design, Visualization and Engineering (pp. 108-115). Springer, Cham. https://doi.org/10.1007/978-3-030-30949-7_12

(22) Natephraa, W. and Motamedib, A. (2019). Live data visualization of IoT sensors using Augmented Reality (AR) and BIM. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 36, pp. 632-638). IAARC Publications. https://doi.org/10.22260/ISARC2019/0084

(23) Kensek, K. M. (2014). Integration of Environmental Sensors with BIM: case studies using Arduino, Dynamo, and the Revit API. Informes de la Construcción, 66(536): e044, https://doi.org/10.3989/ic.13.151

(24) Bonvini, M., Sohn, M.D., Granderson, J., Wetter, M. and Piette, M.A., 2014. Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques. Applied Energy, 124: 156-166. https://doi.org/10.1016/j.apenergy.2014.03.009

(25) Sallans, B., Bruckner, D. and Russ, G. (2006). August. Statistical detection of alarm conditions in building automation systems. In 2006 4th IEEE International Conference on Industrial Informatics (pp. 257-262). IEEE. https://doi.org/10.1109/INDIN.2006.275790

(26) Liu, H., Huang, M., Janghorban, I., Ghorbannezhad, P. and Yoo, C. (2011). Faulty sensor detection, identification and reconstruction of indoor air quality measurements in a subway station. In 2011 11th International Conference on Control, Automation and Systems (pp. 323-328). IEEE.

(27) Yang, X. and Ergan, S. (2016). Design and evaluation of an integrated visualization platform to support corrective maintenance of HVAC problem-related work orders. Journal of Computing in Civil Engineering, 30(3): 04015041. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000510

(28) Dong, Z. (2019). Exploring Participatory Sensing and the Internet of Things to Develop Data-Driven Thermal Comfort Models on the USC Campus. USC, MBS thesis.

Publicado

2021-11-26

Cómo citar

Su, G. ., & Kensek, K. . (2021). Detección de fallas en tiempo real por medio de la integración de sensores de información en BIM. Informes De La Construcción, 73(564), e416. https://doi.org/10.3989/ic.85699

Número

Sección

Artículos