Residual safety for flexural bending of slabs with corrosion in the joists

Authors

  • E. Gil Universitat Politècnica de València
  • J. Vercher Universitat Politècnica de València
  • A. Mas Universitat Politècnica de València
  • E. Fenollosa Universitat Politècnica de València

DOI:

https://doi.org/10.3989/ic.13.084

Keywords:

Remaining structural safety, wire corrosion, precast joists, load test

Abstract


A large number of slabs with severe corrosion problems at the precast joists have appeared in Spain, often increased by the use of aluminous cement. The purpose of this paper is to evaluate the residual safety for the bending mechanisms in the most common cases of damaged slabs, to decide the magnitude of the needed intervention. The damaged slabs have been evaluated as a part of an entire building, since the boundary conditions are essential for obtaining actual behavior, taking into account the different phases of the construction process and deterioration over time. A major cracking in the constructive elements are not frequently observed in inspections, and it is found that there is a sufficient residual safety to undertake the rehabilitation works without exceptional measures.

Downloads

Download data is not yet available.

References

(1) Morán-Cabré, F. (1994). Estimación de la seguridad residual en estructuras de hormigón con problemas patológicos. Informes de la Construcción, 46(434): 39-51. http://dx.doi.org/10.3989/ic.1994.v46.i434.1107

(2) Giménez, E. (2007). Estudio experimental y numérico de soportes de hormigón armado reforzados con perfiles metálicos sometidos a esfuerzos de compresión simple (Tesis Doctoral). Valencia: Universidad Politécnica de Valencia.

(3) Vieitez, J.A., Ramírez, J.L. (1984). Patología de la Construcción en Espa-a: Aproximación Estadística. Resumen de Tesis Doctoral. Informes de la Construcción, 36(364): 5-15.

(4) Instituto Valenciano de la Edificación (IVE). (2008). Guía para la Inspección y Evaluación Preliminar de estructuras de hormigón en edificios existentes. Serie guías de la calidad. Valencia: Generalitat Valenciana - Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge.

(5) Instituto Valenciano de la Edificación (IVE). (2008). Experiencia en Inspección de estructuras en edificios. Comunidad Valenciana 1991-2008. Serie guías de la calidad. Valencia: Generalitat Valenciana - Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge.

(6) Grupo Espa-ol del Hormigón (GEHO). (1994). Reparación y refuerzo de estructuras hormigón. Guía FIP de buena práctica. Boletín GEHO, 14. Madrid.

(7) Di Evangelista, A., De Leonardis, A., Valente, C., Zuccarino, L. (2011). Design and testing of corrosion damaged prestressed concrete joists: the Pescara Benchmark. En 9th International Conference on Damage Assessment of Structures (DAMAS 2011), Journal of Physics: Conference Series 305. http://dx.doi.org/10.1088/1742-6596/305/1/012081

(8) Coronelli, D., Gambarova, P. (2004). Structural assessment of corroded reinforced concrete beams: modeling guidelines. Journal of Structural Engineering, 130(8): 1214-1224. http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1214)

(9) Foster, S.J., Bailey, C.G., Burgess, I.W., Plank, R.J. (2004). Experimental behavior of concrete floor slabs at large displacements. Engineering Structures, 26(9): 1231-1247. http://dx.doi.org/10.1016/j.engstruct.2004.04.002

(10) Prevalesa, S.L. (2008). Ficha de características técnicas - según EHE-08 - del forjado de viguetas pretensado modelo DITECO T12. Valencia.

(11) Ministerio de Vivienda. (2006, 28 de marzo). Código Técnico de la Edificación (CTE). Boletín Oficial del Estado, nº 74: 11816-11831. Madrid, Espa-a.

(12) Bangash, M.Y.H. (1989). Concrete and concrete structures: Numerical modeling and applications. London - New York: Elsevier Applied Science.

(13) Willam, K.J., Warnke, E.D. (1975). Constitutive model for the triaxial behavior of concrete. En Proceedings of the International Association for Bridge and Structural Engineering, ISMES, 19: 1-30. Bergamo, Italy.

(14) Vercher, J. (2013). Seguridad residual en los forjados con corrosión severa (Tesis Doctoral). Valencia: Universidat Politècnica de València. PMid:23793930

(15) Cubel, F., Más, A., Vercher, J., Gil, E. (2012). Design and construction recommendations for brick enclosures with continuous air chamber. Construction and Building Materials, 36: 151-164. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.128

(16) Brencich, A., de Felice, G. (2009). Brickwork under eccentric compression: Experimental results and macroscopic models. Construction and Building Materials, 23(5): 1935-1946. http://dx.doi.org/10.1016/j.conbuildmat.2008.09.004

(17) Dilrukshi, K.G.S., Dias, W.P.S., Rajapakse, R.K.N.D. (2010). Numerical modelling of cracks in masonry walls due to thermal movements in an overlying slab. Engineering Structures, 32(5): 1411-1422. http://dx.doi.org/10.1016/j.engstruct.2010.01.019

(18) Fanning, P. (2001). Nonlinear models of reinforced and post-tensioned concrete beams. Electronic Journal of Structural Engineering, 2: 111-119.

(19) Tavio, T., Tata, A. (2009). Predicting nonlinear behavior and stress-strain relationship of rectangular confined reinforced concrete columns with Ansys. Civil Engineering Dimension, 11(1): 23-31.

(20) Rodriguez, J., Ortega, L.M., Casal, J. (1997). Load carrying capacity of concrete structures with corroded reinforcement. Construction and Building Materials, 11(4): 239-248. http://dx.doi.org/10.1016/S0950-0618(97)00043-3

Published

2015-03-30

How to Cite

Gil, E., Vercher, J., Mas, A., & Fenollosa, E. (2015). Residual safety for flexural bending of slabs with corrosion in the joists. Informes De La Construcción, 67(537), e054. https://doi.org/10.3989/ic.13.084

Issue

Section

Research Articles