Towards a calibration of building energy models: A case study from the Spanish housing stock in the Mediterranean climate
DOI:
https://doi.org/10.3989/ic.15.081Keywords:
Calibration, energy models, monitoring, residential stock, retrofitting, simulationAbstract
Current energy policies focus on retrofitting to achieve Horizon 2020 aims, especially concerning the residential stock constructed before the first thermal regulations. According to this, improving energy efficiency and interior comfort conditions in buildings must be supported by the knowledge of its real energy performance. Due to uncertainty and the lack of information on the current energy performance of housing and its real operational conditions, discrepancies between the results obtained and the measured data arise. Housing monitoring under real occupational conditions become essential for a better understanding of environmental behavior of residential building stock. Our aim is to show the calibration process, based on monitoring data obtained from a group of dwellings of national heritage interest built in the 1950s in Seville (a Mediterranean climate city). Calibration allows simulation results to approximate to current environmental conditions, aiming to predict and optimize the potential for subsequent environmental and energy implementation.
Downloads
References
(1) CENER. (2014). Estudio T-nZEB: Transformación de Edificios Existentes hacia Edificios de Consumo Casi Nulo, p. 15, Madrid: Departamento de Energética Edificatoria. Centro Nacional de Energías Renovables.
(2) EUR-Lex. (2011, 11st of February) . Opinion "Energy poverty in the context of liberalisation and the economic crisis". Official Journal of the European Union, C44: 53-56. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52010AE0990&from=EN.
(3) EUR-Lex. (2012, 14th of November). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Official Journal of the European Union, L315: 1-56. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0027&rid=1.
(4) Cortes Generales. (2013). Ley 8/2013 de rehabilitación, regeneración y renovación urbanas. Boletín Oficial del Estado, nº 153. Spain.
(5) Sendra, J. J, Domínguez, S., Bustamante, P., León, A.L. (2013). Energy intervention in the residential sector in the south of Spain: Current challenges. Informes de la Construcción, 65(532): 457-464, http://dx.doi.org/10.3989/ic.13.074
(6) Sunikka-Blank, M., Galvin, R. (2012). Introducing the prebound effect: the gap between performance and actual energy consumption. Building Research and Information, 40(3): 260-273. http://dx.doi.org/10.1080/09613218.2012.690952
(7) European Commission. (2015). New tools and methodologies to reduce the gap between predicted and actual energy performances at the level of buildings and blocks of buildings. http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/413-eeb-07-2015.html.
(8) Reddy, T. (2006). Literature review on calibration of building energy simulation programs: uses, problems, procedures, uncertainty and tools. ASHRAE Transactions, (112): 226-240.
(9) Reddy, T., Maor, I., Panjapornpon, C. (2007). Calibrating detailed building energy simulation programs with measured data - Part I: General methodology (RP-1051). HVAC&R Research, 13(2): 221-241.
(10) Raftery, P., Keane, M., O'Donnell, J. (2011). Calibrating whole building energy models: An evidence-based methodology. Energy and Buildings, 43(9): 2356-2364, http://dx.doi.org/10.1016/j.enbuild.2011.05.020
(11) Raftery, P., Keane, M., Costa, A. (2011). Calibrating whole building energy models: Detailed case study using hourly measured data. Energy and Buildings, 43(12): 3666-3679, http://dx.doi.org/10.1016/j.enbuild.2011.09.039
(12) O'Neill, Z., Eisenhower, B. (2013). Leveraging the analysis of parametric uncertainty for building energy model calibration. Building Simulation, 6(4): 365-377. http://dx.doi.org/10.1007/s12273-013-0125-8
(13) Sendra, J. J., Domínguez, S., León, A. L. (2011). Proyecto Efficacia: Optimización energética en la vivienda colectiva. Sevilla: Secretariado de Publicaciones de la Universidad de Sevilla, Emvisesa y Sodinur. PMCid:PMC3231437
(14) Mortensen, A., Heiselberg, P., Knudstrup, M. (2014). Economy Controls Energy Retrofits of Danish Single-Family Houses. Comfort, Indoor Environment and Architecture Increase the Budget. Energy and Buildings, 72: 465-475. http://dx.doi.org/10.1016/j.enbuild.2013.12.054
(15) Santamouris, M., Alevizos, S. M., Aslanoglou, L., Mantzios, D., Milonas, P., Sarelli, I., Karatasou, S., Cartalis, K., Paravantis, J. A. (2014). Freezing the poor-Indoor environmental quality in low and very low income households during the winter period in Athens. Energy and Buildings, 70: 61-70. http://dx.doi.org/10.1016/j.enbuild.2013.11.074
(16) Tweed, C. (2013). Socio-technical issues in dwelling retrofit. Building Research and Information, 41(5): 551-562. http://dx.doi.org/10.1080/09613218.2013.815047
(17) ASHRAE. (2002). ASHRAE Guideline 14-2002: Measurement of Energy and Demand Savings.
(18) van Ruijven, B., de Vries, B., van Vuuren, D. P., van der Sluijs, J. P. (2009). A Global Model for Residential Energy use: Uncertainty in Calibration to Regional Data. Energy, 35(1): 269-282. http://dx.doi.org/10.1016/j.energy.2009.09.019
(19) Booth, A. T., Choudhary, R., Spiegelhalter, D. T. (2011). Handling uncertainty in housing stock models. Building and Environment, 48: 35-47. http://dx.doi.org/10.1016/j.buildenv.2011.08.016
(20) De la Flor, F. J. S., Domínguez, S. A., Félix, J. L. M., Falcón, R. G. (2008). Climatic zoning and its application to Spanish building energy performance regulations. Energy&Buildings, 40(10): 1984-1990. http://dx.doi.org/10.1016/j.enbuild.2008.05.006
(21) Docomomo Ibérico Foundation. Residential Complex La Estrella. http://www.docomomoiberico.com/index.php? option=com_k2&view=item&id=1008:conjunto-de-viviendas-la-estrella&Itemid=11&vista=1&lang=es.
(22) IAPH (Patrimonio Inmueble de Andalucía). Residential Complex La Estrella. http://www.iaph.es/patrimonio-inmueble-andalucia/resumen.do?id=i17217.
(23) AEMET. http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=5783&k=and. (Last visit: 01-02-2015).
(24) León, A. L., Muñoz, S., León, J., Bustamante, P. (2010). Monitoring environmental and energy variables in the construction of subsidized housing: Cros-Pirotecnia building in Sevilla. Informes de la Construcción, 62(519): 67-82. http://dx.doi.org/10.3989/ic.09.045
(25) AENOR-CEN. (2002). UNE-EN ISO 7726, Ergonomics of the thermal environment - Instruments for measuring physical quantities. Asociación Española de Normalización (AENOR).
(26) Blázquez, T., Suárez, R. (2014). Experiencias de Monitorización de Vivienda Plurifamiliar de los años Cincuenta en Sevilla. In Barbero-Barrera, M. M., Olivieri, F., Pinilla-Melo, J. (Ed.), Miradas a la investigación arquitectónica: construcción, gestión, tecnología, (pp. 289-293). Madrid: Escuela Técnica Superior de Arquitectura (ETSAM), Universidad Politécnica de Madrid.
(27) Fernández-Agüera, J., Sendra, J. J. (2011). Protocols for Measuring the Airtightness of Multi-Dwelling Units in Southern Europe. Procedia Engineering, 21: 98-105. http://dx.doi.org/10.1016/j.proeng.2011.11.1992
(28) AENOR-CEN. (1996). UNE-EN ISO 9972, Thermal performance of buildings - Determination of air permeability of buildings - Fan pressurization method. (ISO 9972:1996, modified). Asociación Española de Normalización (AENOR).
(29) AENOR-CEN. (1998). UNE-EN 13187:1998, Thermal performance of buildings. qualitative detection of thermal irregularities in building envelopes. Infrared method (ISO 6781:1983, modified). Asociación Española de Normalización (AENOR).
(30) ISO. (2008). ISO 18434-1:2008, Condition monitoring and diagnostics of machines - Thermography - Part 1: General procedures.
(31) U.S. Department of Energy. EnergyPlus Energy Simulation Software: http://apps1.eere.energy.gov/buildings/energyplus/.
(32) DOE (U. S. Department of Energy). http://www.energy.gov.
(33) Imessad, K., Derradji, L., Ait Messaoudene, N., Mokhtari, F., Chenak, A., Kharchi, R. (2014). Impact of passive cooling techniques on Energy demand for residential buildings in a Mediterranean climate. Renewable Energy, 71: 589-597. http://dx.doi.org/10.1016/j.renene.2014.06.005
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.