Estudio numérico probabilístico de la capacidad resistente de tubos de HRFA con distribución aleatoria de fibras

Autores/as

DOI:

https://doi.org/10.3989/ic.90428

Palabras clave:

tubos de drenaje, HRFA, simulación Monte Carlo, estudio numérico, distribución aleatoria de fibras, estudio paramétrico

Resumen


En este trabajo, se presenta un estudio numérico para evaluar la capacidad de carga de tubos de HRFA considerando una orientación y distribución de fibras aleatoria. Para ello, se simuló el ensayo de tres aristas a través de un modelo de elementos finitos 3D en combinación con el método de Monte Carlo. Las fibras son representadas como elementos discretos distribuidos aleatoriamente en la masa de hormigón. El fenómeno de arrancamiento es considerado a través de una modificación del modelo constitutivo del acero. Además, se realizó un estudio paramétrico considerando variaciones en el dosaje de fibras y la clase de hormigón. Los resultados mostraron que la aleatoriedad en la distribución y orientación de las fibras afecta significativamente la carga máxima alcanzada con los tubos de HRFA. Sin embargo, esta carga máxima no varía sensiblemente cuando la distribución sigue una función de probabilidad uniforme, siendo la clase de hormigón el parámetro predominante.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Barros, J., Figueiras, J. (1999). Flexural behavior of sfrc: Testing and modeling, Journal of Materials in Civil Engineering, 4(11), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)

(2) Buratti, N., Mazzotti, C., Savoia, M. (2011). Post-cracking behaviour of steel and macrosynthetic fibre-reinforced concretes, Construction and Building Materials, 34: 243- 248.

(3) Soulioti, D., Barkoula, M., Paipetis, A., Matikas, T. (2009). Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete, Strain. An International Journal for Experimental Mechanics, 47: e535-e541. https://doi.org/10.1111/j.1475-1305.2009.00652.x

(4) Kiranbala, D., Bishwortij, S. (2013). Effects of steel fibres in reinforced concrete, International Journal of Engineering Research & Technology, 2(10), 2906-2913. https://www.ijert.org/research/effects-of-steel-fibres-in-reinforced-concrete-IJERTV2IS101024.pdf.

(5) Dupont, D., Vandewalle, L. (2005). Distribution of steel fibres in rectangle sections, Cement and Concrete Composites, 27: 391-398. https://doi.org/10.1016/j.cemconcomp.2004.03.005

(6) Zandi, Y., Husem, M., Pul, S. (2011). Effect of distribution and orientation of steel fiber reinforced concrete, Trabajo presentado en 4th WSEAS international conference on Energy and development - environment - biomedicine, pp. 260-264, Stevens Point, Wisconsin, United States. https://www.researchgate.net/publication/262251817_Effect_of_distribution_and_orientation_of_steel_fiber_reinforced_concrete

(7) Laranjeira, F., Grunewald, S., Walraven, J., Blom, C., Molins, C., Aguado, A. (2011). Characterization of the orientation profile of steel fiber reinforced concrete, Materials and Structures, 44(6), 1093-1111. https://doi.org/10.1617/s11527-010-9686-5

(8) Svec, O., Zirgulis, G. (2014). Influence of formwork surface on the orientation of steel fibers within self-compacting concrete and on the mechanical properties of casting structural element, Cement and Concrete Composites, 50: 60-72. https://doi.org/10.1016/j.cemconcomp.2013.12.002

(9) Ozyurt, N., Mason, T., Shah, S. (2007). Correlation of fiber dispersion, rheology and mechanical performance of frcs, Cement and Concrete Composites, 29(2), 70-79. https://doi.org/10.1016/j.cemconcomp.2006.08.006

(10) Toutanji, H., Bayasi, Z. (1998). Effects of manufacturing techniques on the flexural behavior of steel fiber reinforced concrete, Cement and Concrete Research, 28(1), 115-124. https://doi.org/10.1016/S0008-8846(97)00213-5

(11) Laranjeira, F. (2010). Design oriented constitutive model for steel fiber reinforced concrete (Tesis doctoral). Universidad Politecnica de Cataluña. http://hdl.handle.net/10803/6174

(12) Martinie, L., Roussel, N. (2011). Simple tools for fiber orientation prediction in industrial practice, Cement and Concrete Research, 41(10), 993-1000. https://doi.org/10.1016/j.cemconres.2011.05.008

(13) Stahli, P., Custer, R., Mier, J. (2008). On flow properties, fibre distribution, fibre orientation and flexural behavior of frc, Materials and Structures, 41(1), 189-196. https://doi.org/10.1617/s11527-007-9229-x

(14) Torrijos, M., Barragan, B., Zerbino, R. (2010). Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes, Construction and Building Materials, 24(6), 1078-1085. https://doi.org/10.1016/j.conbuildmat.2009.11.008

(15) Kim, J., Yoo, D. (2019). Effects of fiber shape and distance on the pullout behavior of steel fibers embedded in ultra-high performance concrete, Cement and Concrete Composites, 103: 213-223. https://doi.org/10.1016/j.cemconcomp.2019.05.006

(16) Kim, J., Yoo, D. (2020). Spacing and bundling effects on rate-dependent pullout behavior of various steel fibers embedded in ultra-high-performance concrete, Archives of Civil and Mechanical Engineering, 2(20). https://doi.org/10.1007/s43452-020-00048-8

(17) Grunewald, S., Laranjeira, F., Walraven, J., Aguado, A., Molins, C. (2012). Improved tensile performance with fiber reinforced self-compacting concrete, High Performance Fiber Reinforced Cement Composites, 6: 51- 58. https://doi.org/10.1007/978-94-007-2436-5_7

(18) Laranjeira, F., Aguado, A., Molins, C., Grunewald, S., Walraven, J., Cavalaro, S. (2012). Framework to predict the orientation of fiber in frc: a novel philosofy, Cement and Concrete Research, 42(6), 752-768. https://doi.org/10.1016/j.cemconres.2012.02.013

(19) Zerbino, R., Tobes, J., Bossio, M., Giaccio, G. (2012). On the orientation of fibres in structural members fabricated with self-compacting fibre reinforced concrete, Cement and Concrete Composites, 34(2), 191-200. https://doi.org/10.1016/j.cemconcomp.2011.09.005

(20) Gettu, R., Gardner, D., Saldivar, H., Barragan, B. (2005). Study of the distribution and orientation of fibers in sfrc spe cimens, Materials and Structures, 38(1), 31-37. https://doi.org/10.1007/BF02480572

(21) Michels, J., Waldmann, D., Maas, S., Zurbes, A. (2012). Steel fibers as only reinforcement for flat slab construction experimental investigation and design, Construction and Building Materials, 26(1), 145-155. https://doi.org/10.1016/j.conbuildmat.2011.06.004

(22) Alzabeebee, S., Chapman, D., Faramarzi, A. (2018). Development of a novel model to estimate bedding factors to ensure the economic and robust design of rigid pipes under soil loads, Tunnelling and Underground Space Technology, 71: 567-578. https://doi.org/10.1016/j.tust.2017.11.009

(23) Instituto Argentino de Racionalización de Materiales (1986). IRAM 11513. Caños y piezas de mortero de cemento portland y de hormigón simple, destinados a obras de desagüe pluvial y cloacal.

(24) de la Fuente, A., Escariz, R., de Figueiredo, A., Molins, C., Aguado, A. (2012). A new design method for steel fibre reinforced concrete pipes, Construction and Building Materials, 30: 547-555. https://doi.org/10.1016/j.conbuildmat.2011.12.015

(25) Mohamed, N., Nehdi, M. (2016). Rational finite element assisted design of precast steel fibre reinforced concrete pipes, Engineering Structures, 124: 196-206. https://doi.org/10.1016/j.engstruct.2016.06.014

(26) Ferrado, F.L., Escalante, M.R., Rougier, V.C (2018). Simulation of the three edge bearing test: 3d model for the study of the strength capacity of SFRC pipes. Mecánica Computacional, 36: 195-204. https://cimec.org.ar/ojs/index.php/mc/article/download/5516/5492

(27) Rewers, I. (2019). Numerical analysis of rc beam with high strength steel reinforcement using CD model, IOP Conference Series: Materials Science and Engineering, 471. https://doi.org/10.1088/1757-899X/471/2/022025

(28) Raza, A., Khan, Q.U.Z., Ahmad, A. (2019). Numerical investigation of load-carrying capacity of gfrp-reinforced rectangular concrete members using CDP model in abaqus, Advances in Civil Engineering, 2019: 1-21. https://doi.org/10.1155/2019/1745341

(29) Federation International du beton (2010). FIB Model Code 2010.

(30) Soetens, T., Matthys, S. (2014). Different method to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete, Construction and Building Materials, 73: 458- 471. https://doi.org/10.1016/j.conbuildmat.2014.09.093

(31) Van Gysel, A. (2000). A. Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staa vezelbeton onderworpen aan buiging, PhD thesis, Ghent University. http://hdl.handle.net/1854/LU-8597952

(32) Barnett, S., Lataste, J., Parry, T., Millard, S., Soutsos, M. (2010). Assessment of fibre orientation in ultra-high performance fibre reinforced concrete and its effect on flexural strength, Materials and Structures, 43: 1009-1023. https://doi.org/10.1617/s11527-009-9562-3

(33) Kang, S., Kim, J. (2011). Investigation on the flexural behavior of uhpcc considering the effect of fiber orientation distribution, Construction and Building Materials, 28(1), 57- 65. https://doi.org/10.1016/j.conbuildmat.2011.07.003

(34) Vandewalle, L., Heirman, G., Van Rickstal, F. (2008). Fibre orientation in self-compacting fibre reinforced concrete, Trabajo presentado en el 7th international RILEM symposium on fibre reinforced concrete: design and applications (BEFIB 2008), pp. 719- 728. https://lirias.kuleuven.be/retrieve/199392

(35) Wille, K., Naaman, A. (2013). Effect of ultra-high performance concrete on pullout behavior of high-strength brass-coated straight steel fibers, ACI Materials Journal, 110(4), 451-462. https://doi.org/10.14359/51685792

(36) Voo, J.Y.L., Foster, S. J. (2008). Variable engagement model for fibre reinforced concrete in tension, Reporte técnico, School of Civil and Environmental Engineering, University of New South Wales.

(37) Instituto Argentino de Racionalización de Materiales (1986). Norma IRAM 11503. Caños de Hormigón armado no pretensado destinados a la conducción de líquidos sin presión.

(38) Instituto Argentino de Racionalización de Materiales (1986). Norma IRAM 1524. Hormigón de cemento. Preparación y curado en obra de probetas para ensayos de compresión y de tracción por compresión diametral.

(39) De la Fuente, A. (2011). Nueva metodología para el diseño de tubos de hormigón estructural (Tesis doctoral). Universidad Politecnica de Cataluña. http://hdl.handle.net/10803/109209

(40) Ércoli, N., Villareal, M., Pico, L. (2014). Factibilidad técnica y evaluación estructural de tubos prefabricados de hormigón reforzado con fibras de acero. Trabajo presentado en 23º Jornadas Argentinas de Ingeniería Estructural. https://jornadasaie.org.ar/jornadas-aie-anteriores/2014/contenidos/trabajos/035.pdf

(41) Martinie, L., Rossi, P., Roussel, N. (2010). Rheology of fiber reinforced cementitious materials: classification and prediction. Cement and Concrete Research, 40: 226-234. https://doi.org/10.1016/j.cemconres.2009.08.032

(42) Dupont, D., Vandewalle, L. (2005). Distribution of steel fibres in rectangular sections, Cement and Concrete Composites, 27: 391-398. https://doi.org/10.1016/j.cemconcomp.2004.03.005

(43) Mohamed, N., Soliman, A., Nehdi, M. (2014). Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes, Engineering Structures, 84: 287-299. https://doi.org/10.1016/j.engstruct.2014.11.033

(44) Mohamed, N., Soliman, A., Nehdi, M. (2014a). Full-scale pipes using dry-cast steel fibre-reinforced concrete, Construction and Building Materials, 72: 411-422. https://doi.org/10.1016/j.conbuildmat.2014.09.025

Publicado

2023-04-10

Cómo citar

Ferrado, F. L. ., Escalante, M. R. ., & Rougier, V. C. . (2023). Estudio numérico probabilístico de la capacidad resistente de tubos de HRFA con distribución aleatoria de fibras. Informes De La Construcción, 75(569), e479. https://doi.org/10.3989/ic.90428

Número

Sección

Artículos