Aplicación de la fotogrametría con drones al control deformacional de estructuras y terreno

Autores/as

DOI:

https://doi.org/10.3989/ic.77867

Palabras clave:

UAV, RPAs, fotogrametría, SFM, control de estructuras, monitoreo de presas, monitoreo de laderas

Resumen


En este trabajo se estudia la viabilidad del empleo de drones para el control de deformaciones del terreno y las estructuras, analizando para cada caso, la resolución, precisión y validación con otras técnicas. Se presenta con detalle la técnica fotogramétrica Structure From Motion, empleada para elaborar ortofotografías y modelos 3D precisos sin necesidad de conocer previamente las posiciones y ángulos de incidencia. El uso de puntos de control precisos, así como drones con sistema integrado RTK, son factores relevantes para la obtención de resultados con alta precisión. Se presenta el caso de estudio de la monitorización de una gran estructura, en este caso una presa arco-gravedad. Los resultados obtenidos presentan una precisión en deformaciones de ±2 mm para la estructura. Esto confirma que la fotogrametría dron es aplicable al control deformacional de presas de hormigón, abriendo las posibilidades a la monitorización de otras grandes estructuras e infraestructuras.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Ministerio de Fomento, G. de E. (2018). Plan estrategico para el desarrollo del sector civil de drones en España 2018-2021. Madrid. España. 73 pp.

(2) Cuerno-Rejado, C., Garcia-Hernandez, L., Sanchez-Carmona, A., Carrio-Fernandez, A., Sanchez-Lopez, J., Campoy-Cervera, P. (2015). Evolution of the Unmanned Aerial Vehicles until present. DYNA Mayo 2015 90 (3): 281-288,

(3) Chabot, D. (2018). Trends in drone research and applications as the Journal of Unmanned Vehicle Systems turns five. Journal of Unmanned Vehicle Systems 6: vi-xv.

(4) Patterson, B. J. (2018). An Aerial View of the Future – Drones in Construction. Geospatialworld. https://www.geospatialworld.net/blogs/an-aerial-view-of-the-future-drones-in-construction/.

(5) Goldman Sachs (2018). The opportunity ahead. https://www.goldmansachs.com/insights/technology-driving-innovation/drones/.

(6) Nissen, E., Arrowsmith, J. R., & Crosby, C. (2010). Introduction to Structure-from-Motion. Geological Society of America Annual Meeting Short Course, Denver, CO. https://kb.unavco.org.

(7) Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32.

(8) Souto-Vidal, M., Ortiz-Sanz, J., Gil-Docampo, M. (2015). Implementación del levantamiento eficiente de fachadas mediante fotogrametría digital automatizada y el uso de software gratuito. Informes de la Construcción, 67(539): e107.

(9) Gonzalez-Rodrigo, B., Tendero-Caballero, R., Garcia-De Viedma, M., Pestana-Puerta, J., Carrio-Fernandez, A., Sanchez-Lopez, J., Suarez-Fernandez, R., Campoy-Cervera, P., Bonatti-Gonzalez, J., Rejas-Ayuga, J., Martinez-Marin, R., Marchamalo, M. (2016). Thermal UAV monitoring of facades: application for building rehabilitation. DYNA, 91(5). 571-577.

(10) Hartley, R., & Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press. Nueva York USA. ISBN: 978-0521623049. 624 pp.

(11) Ullman S. (1979). The Interpretation of Structure from Motion. Proceedings of the Royal Society of London. Series B, Biological Sciences 203(1153).

(12) Lowe, D. G. (1999). Object Recognition from Local Scale-Invariant Features. Proceedings of the Seventh IEEE International Conference on Computer Vision. 20-27 Sept. 1999.

(13) Barberini, M., Rubboli, M. (2016) Il Rilievo fotogrammetrico con il Drone alla Diga di Ridracoli. GEOmedia 19 (6): 2283-5687.

(14) Ridolfi, E., Buffi, G., Venturi, S. & Manciola, P. (2017). Accuracy Analysis of a Dam Model from Drone Surveys. Sensors 17, 1777,

(15) Pagliari, D., Rossi L., Passoni, D., Pinto, L., De Michele, C. & Avanzi, F. (2017) Measuring the volume of flushed sediments in a reservoir using multi-temporal images acquired with UAS, Geomatics, Natural Hazards and Risk, 8:1, 150-166.

(16) Buffi, G., Manciola, P., De Lorenzis, L., Cavalagli, N., Comodini, F., Gambi, A., Gusella, V., Mezzi, M., Niemeier, W., Tamagnini, C. (2017). Calibration of finite element models of concrete arch-gravity dams using dynamical measures: The case of Ridracoli. Procedia Eng. 2017, 199, 110–115.

(17) Buffi, G., Manciola, P., Grassi, S., Gambi, A., Barberini, M. (2017). Survey of the Ridracoli Dam: UAV—Based Photogrammetry and Traditional Topographic Techniques in the inspection of Vertical Structures. Geomat. Nat. Hazards Risk 2017, 8: 1562–1579.

(18) Ridolfi, E.; Manciola, P. (2018). Water Level Measurements from Drones: A Pilot Case Study at a Dam Site. Water 2018, 10, 297,

(19) Tillian M., Sulzer, W. (2015). Remote Sensing (UAV) for torrent inspection /survey in the alpine municipality of Weng im Gesäuse (Austria). 17th International Symposium “Landscape and Landscape Ecology”, 27-29 May 2015, Nitra, Slovakia. Editors: Martin Boltižiar & Andrej Bača. Bratislava, Slovakia. ISBN 978-80-89325-27-6

(20) Kaufmann, V., Seier, G.. (2016). Long-Term Monitoring of Glacier Change at Gössnitzkees (Austria) Using Terrestrial Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8: 495–502,

(21) Kaufmann, V., Seier, G., Sulzer, W., Wecht, M., Liu, Q., Lauk, G., and Maurer, M. (2018) Rock glacier monitoring using aerial photographs: conventional vs. UAV-based mapping – a comparative study. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1: 239-246,

(22) Seier G., Stangl, S., Schöttl, S., Sulzer, W. & Sass, O. (2017) UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria. International Journal of Remote Sensing, 38:8-10, 2903-2920,

(23) Seier, G., Kellerer-Pirklbauer, A., Wecht, M., Hirschmann, S., Kaufmann, V., Lieb, G. K., and Sulzer, S. (2017). UAS-Based Change Detection of the Glacial and Proglacial Transition Zone at Pasterze Glacier, Austria. Remote Sensing 9: 549.

(24) Seier, G., Sulzer, W., Lindbichler, P., Gspurning, L., Hermann, S., Konrad, H.M., Irlinger, G. & Adelwöhrer, R. (2018) Contribution of UAS to the monitoring at the Lärchberg-Galgenwald landslide (Austria), International Journal of Remote Sensing, 39:15-16, 5522-5549.

(25) Gao, A., Wu, S., Wang, F., Wu, X., Xu, P., Yu, L., Zhu, S. (2019). A Newly Developed Unmanned Aerial Vehicle (UAV) Imagery Based Technology for Field Measurement of Water Level. Water 2019, 11, 124.

(26) Yu, J., Gan, Z., Zhong, L. & Deng, L. (2018) Research and practice of UAV remote sensing in the monitoring and management of construction projects in riparian areas. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 2018: 2161-2165.

(27) Li, Y., Gong, J. H., Zhu, J., Ye, L., Song, Y. Q., and Yue, Y. J.: Efficient dam break flood simulation methods for developing a preliminary evacuation plan after the Wenchuan Earthquake. Nat. Hazards Earth Syst. Sci., 12, 97–106,

(28) Yang, M., Huang, K. & Tsai, H. (2016) Monitoring and Measurement of an Artificial Landslide Dam Using UAV Images and Image-Based Modeling. 2016 International Conference on Mathematical, Computational and Statistical Sciences and Engineering (MCSSE 2016)

(29) Zhang, S., Lv, P., Yang, X., Chen, X. & Zhou, J. (2018). Spatiotemporal distribution and failure mechanism analyses of reservoir landslides in the Dagangshan reservoir, south-west China. Geomatics, Natural Hazards and Risk, 9:1, 791-815.

(30) US Society on Dams. (2016) US Committee on Monitoring of Dams and Their Foundations; USSD Committee on Levees. Monitoring Levees. 42 pp.

(31) Koparan, C., Koc, A. B., Privette, C. V & Sawyer, C. B. (2018). In Situ Water Quality Measurements Using an Unmanned Aerial Vehicle ( UAV ) System. Water 2018, 10, 264.

(32) Khaloo A, Lattanzi D, Jachimowicz A and Devaney, C. (2018) Utilizing UAV and 3D Computer Vision for Visual Inspection of a Large Gravity Dam. Front. Built Environ. 4:31.

(33) Matthew D. Larson, Simic Milas A., Vincent, R.K., & Evans, J.E. (2018) Multi-depth suspended sediment estimation using high-resolution remote-sensing UAV in Maumee River, Ohio, International Journal of Remote Sensing, 39:15-16, 5472-5489.

(34) Benson, J. et al. Microorganisms Collected from the Surface of Freshwater Lakes Using a Drone Water Sampling System (DOWSE). Water 2019, 11, 157.

(35) Jordá-Bordehore, L., Riquelme, A., Tomás, R. & Cano, M. (2016). Análisis estructural y geomecánico en zonas inaccesibles de cavernas naturales mediante técnicas fotogramétricas: aplicación en la entrada de la cueva de Artá (Mallorca). El karst y el hombre las cuevas como Patrim. Mundial. 528 (2016).

(36) Tomás, R., Riquelme, A., Cano, M., Abellán, A, Jordá, L.. (2016). Structure from Motion (SfM): una técnica fotogramétrica de bajo coste para la caracterización y monitoreo de macizos rocosos. 10o Simp. Nac. Ing. Geotécnica, A Coruña, España 1, 209–216 (2016). ISBN 978-84-945284-2-2, págs. 209-216

(37) Villanueva, J. R. E., Martinez, L. I., & Montiel, J. I. P. (2019). DEM Generation from Fixed-Wing UAV Imaging and LiDAR-Derived Ground Control Points for Flood Estimations. Sensors. 2019, 19, 3205.

Publicado

2021-04-05

Cómo citar

Sancho Gómez-Zurdo, R. ., Galán Martín, D. ., González-Rodrigo, B. ., Marchamalo Sacristán, M. ., & Martínez Marín, R. . (2021). Aplicación de la fotogrametría con drones al control deformacional de estructuras y terreno. Informes De La Construcción, 73(561), e379. https://doi.org/10.3989/ic.77867

Número

Sección

Artículos