Rendimiento estructural de bloques de hormigón con agregados de madera para la construcción de edificios de mediana y gran altura

Autores/as

DOI:

https://doi.org/10.3989/ic.81319

Palabras clave:

Comportamiento sismorresistente, Materiales, Estructuras, Hormigón, Aserrín, Virutas de madera, Bloques

Resumen


Los bloques de hormigón son elementos muy utilizados en edificación, debido a su bajo coste, su buen desempeño y la facilidad de montaje que tiene en los muros. Sin embargo, la baja ductilidad y resistencia a la flexión, podría perjudicar el comportamiento sismorresistente de las edificaciones, sobre todo en las construcciones de mediana y gran altura. Sin embargo, el añadido de aditivos reciclados y abundantes en la Naturaleza como la madera podrían mejorar las características estructurales desde el punto de vista sísmico y estructural. Este trabajo analiza y compara el rendimiento y el desempeño estructural que adquieren los bloques de hormigón ordinario incorporando en su elaboración diferentes tipos de aditivos de madera (desechos de aserrín y virutas de madera) en pórticos de mediana y gran altura (4, 8, 12 y 16 plantas). La modelación de los pórticos, utilizarán resultados experimentales realizados en un laboratorio de la Universidad de Talca (Chile).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Mukherjee, S. P., & Vesmawala, G. (2013). Literature review on technical aspect of sustainable concrete. International Journal of Engineering Science Invention, 2(8), 1-9.

(2) Dominguez-Santos, D., Ballesteros-Perez, P., & Mora-Melia, D. (2017). Structural resistance of reinforced concrete buildings in areas of moderate seismicity and assessment of strategies for structural improvement. Buildings, 7(4), 89. https://doi.org/10.3390/buildings7040089

(3) De Landa, M. (1997). A thousand years of nonlinear history.

(4) Mehta, P. K., & Monteiro, P. J. (2017). Concrete microstructure, properties and materials.

(5) Thorat, P. K., Papal, M., Kacha, V., Sarnobat, T., & Gaikwad, S. (2015). Hollow concrete blocks-A new trend. International Journal of Engineering & Research, 5(5), 9-26.

(6) Ahmad, R., Malik, M. I., Jan, M. U., Ahmad, P., Seth, H., & Ahmad, J. (2014). Brick Masonry and Hollow Concrete Block Masonry-A Comparative Study. International Journal of Civil and Structural Engineering Research (IJCSER), 1(1), 14-21.

(7) Maroliya, M. K. (2001). Load carrying capacity of hollow concrete block masonry column. IOSR J. Eng.(IOSRJEN), 2(10), 5-8.

(8) Avila, L., Vasconcelos, G., Lourenço, P. B., Mendes, N., Alves, P., & Costa, A. C. (2012). Seismic response analysis of concrete block masonry buildings: An experimental study using shaking table.

(9) Frasson Jr, A., Casali, J. M., Oliveira, A. L., & Prudêncio Jr, L. R. (2012, June). A Mix design methodology for concrete block units. In Proceedings of the 15th International Brick and Block Masonry Conference, Florianapolis, Brazil (pp. 3-6).

(10) Rathi, S. O., & Khandve, P. V. (2015). AAC block-A new eco-friendly material for construction. International Journal of Advance Engineering and Research Development, 2(4), 410-414. https://doi.org/10.21090/IJAERD.020464

(11) Mindess, S., & Vondran, G. (1988). Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading. Cement and Concrete Research, 18(1), 109-115. https://doi.org/10.1016/0008-8846(88)90127-5

(12) Bayasi, Z., & McIntyre, M. (2002). Application of fibrillated polypropylene fibers for restraint of plastic shrinkage cracking in silica fume concrete. Materials Journal, 99(4), 337-344. https://doi.org/10.14359/12215

(13) Ashour, S. A., & Wafa, F. F. (1993). Flexural behavior of high-strength fiber reinforced concrete beams. Structural Journal, 90(3), 279-287. https://doi.org/10.14359/4186

(14) Oh, B. H. (1992). Flexural analysis of reinforced concrete beams containing steel fibers. Journal of structural engineering, 118(10), 2821-2835. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2821)

(15) Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and concrete composites, 23(6), 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5

(16) Quaranta, N., Caligaris, M., López, H., Unsen, M., & Di Rienzo, H. (2008). Adición de aserrines de descarte en la producción de mampuestos cerámicos. In Actas del Octavo Congreso Internacional de Metalurgia y Materiales.

(17) Nili, M., Sasanipour, H., & Aslani, F. (2019). The effect of fine and coarse recycled aggregates on fresh and mechanical properties of self-compacting concrete. Materials, 12(7), 1120. https://doi.org/10.3390/ma12071120 PMid:30987339 PMCid:PMC6479453

(18) Xie, J., Zhao, J., Wang, J., Wang, C., Huang, P., & Fang, C. (2019). Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials, 12(8), 1247. https://doi.org/10.3390/ma12081247 PMid:31014035 PMCid:PMC6515352

(19) Liu, W., Cao, W., Zhang, J., Qiao, Q., & Ma, H. (2016). Seismic performance of composite shear walls constructed using recycled aggregate concrete and different expandable polystyrene configurations. Materials, 9(3), 148. https://doi.org/10.3390/ma9030148 PMid:28773274 PMCid:PMC5456741

(20) Zhu, L., Dai, J., Bai, G., & Zhang, F. (2015). Study on thermal properties of recycled aggregate concrete and recycled concrete blocks. Construction and Building Materials, 94, 620-628. https://doi.org/10.1016/j.conbuildmat.2015.07.058

(21) Miličević, I., Bjegović, D., & Siddique, R. (2015). Experimental research of concrete floor blocks with crushed bricks and tiles aggregate. Construction and Building materials, 94, 775-783. https://doi.org/10.1016/j.conbuildmat.2015.07.163

(22) Pastor, J. M., García, L. D., Quintana, S., & Peña, J. (2014). Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Construction and Building Materials, 54, 541-549. https://doi.org/10.1016/j.conbuildmat.2013.12.040

(23) Ergün, A. (2011). Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and building materials, 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002

(24) Dominguez-Santos, D., Mora-Melia, D., Pincheira-Orellana, G., Ballesteros-Pérez, P., & Retamal-Bravo, C. (2019). Mechanical properties and seismic performance of wood-concrete composite blocks for building construction. Materials, 12(9), 1500. https://doi.org/10.3390/ma12091500 PMid:31072016 PMCid:PMC6539851

(25) López-Almansa, F., Domínguez, D., & Benavent-Climent, A. (2013). Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions. Engineering structures, 46, 687-702. https://doi.org/10.1016/j.engstruct.2012.08.033

(26) Domínguez, D., López-Almansa, F., & Benavent Climent, A. (2014). Comportamiento, para el terremoto de Lorca de 11-05-2011, de edificios de vigas planas proyectados sin tener en cuenta la acción sísmica. https://doi.org/10.3989/ic.12.092

(27) Page, J., Djelal, C., & Vanhove, Y. (2020). Optimisation of vibrocompaction process for wood-based concrete blocks. The International Journal of Advanced Manufacturing Technology, 109(3), 1189-1204. https://doi.org/10.1007/s00170-020-05674-3

(28) Bootle, K. R. (1983). Wood in Australia. Types, properties and uses. McGraw-Hill book company.

(29) Filiatrault, A., & Folz, B. (2002). Performance-based seismic design of wood framed buildings. Journal of Structural Engineering, 128(1), 39-47. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(39)

(30) Alengaram, U. J., Salam, A., Jumaat, M. Z., Jaafar, F. F., & Saad, H. B. (2011). Properties of high-workability concrete with recycled concrete aggregate. Materials Research, 14(2), 248-255. https://doi.org/10.1590/S1516-14392011005000039

(31) ASTM D143 - 09. (2009) Standard Test Methods for Small Clear Specimens of Timber. USA Standard.

(32) Wangaard, F. F., Kellogg, R. M., & Brinkley, A. W. (1966). Variation in wood and fiber characteristics and pulp-sheet properties of slash pine. Tappi, 49(6), 263.

(33) RFS Hearmon - Forest Products Research, (1948). The elasticity of wood and plywood.

(34) Carle, J. y Holmgren, P. (2008). Wood from planted forests: A global outlook 2005-2030. For. Prod. J. 58, 6. https://doi.org/10.1079/9781845935641.0047

(35) Raga, F. (2009). The Chilean forestry sector and associated risks. Trébol, 51, 10-19.

(36) González, P. (2006). Disponibilidad de residuos madereros provenientes de la industria primaria de la madera para uso energético XI Región de Aysén. In Proceedings of the seminar Hacia una Politica Nacional de Bioenergía, Aysen, Chile.

(37) NCh 1019 Of 09. (2009). Hormigón. Determinación de la Docilidad. Método del Asentamiento del cono de Abrams. Instituto Nacional de Normalización: Santiago, Chile. (Chilean Standard).

(38) NCh 1037 Of77, 1977 (1997). Hormigón. Ensayo de Compresión de Probetas Cúbicas y Cilíndricas. Instituto Nacional de Normalización: Santiago, Chile. (Chilean Standard).

(39) NCh 163, 2013. (2013). Áridos Para Morteros y Hormigones. Requisitos. Instituto Nacional de Normalización: Santiago, Chile. (Chilean Standard).

(40) NCh 165 Of 77. (2009). Áridos Para Morteros y Hormigones-Tamizado y Determinación de la Granulometría. Instituto Nacional de Normalización: Santiago, Chile. (Chilean Standard).

(41) Real Decreto 1247. (2008). Instrucción de Hormigón Estructural. EHE 08; Spain. (Spanish Standard).

(42) CTN 140. (2010). Eurocodigos Estructurales. Una Norma Española (UNE). (Spanish Standard).

(43) Crisafulli, F. J., Carr, A. J., & Park, R. (2000). Analytical modelling of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 33(1), 30-47. https://doi.org/10.5459/bnzsee.33.1.30-47

(44) Lizárraga, J. F., & Pérez Gavilán, J. J. (2015). Modelación no lineal de muros de mampostería empleando elementos de contacto. Ingeniería sísmica, (93), 41-59. https://doi.org/10.18867/ris.93.410

(45) Smyrou, E., Blandon, C., Antoniou, S., Pinho, R., & Crisafulli, F. (2011). Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 9(5), 1519-1534. https://doi.org/10.1007/s10518-011-9262-6

(46) Wararuksajja, W., Srechai, J., & Leelataviwat, S. (2020). Seismic design of RC moment-resisting frames with concrete block infill walls considering local infill-frame interactions. Bulletin of Earthquake Engineering. 18(14), 6445-6474. https://doi.org/10.1007/s10518-020-00942-9

(47) Di Domenico, M., Ricci, P., & Verderame, G. M. (2019). Predicting the out-of-plane seismic strength of unreinforced masonry infill walls. Journal of Earthquake Engineering, 1-38. https://doi.org/10.1080/13632469.2020.1835754

(48) SeismoSoft. (2020). A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. Available online: http://www.seismosoft.com.

(49) CTE DEB SE F, (2006). Documento Básico. Código Técnico de la Edificación. Seguridad Estructural: Fabrica. Ministerio de Fomento: Madrid, Spain. (Spanish Standard).

(50) Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

(51) Bosco, M., Ferrara, E., Ghersi, A., Marino, E. M., & Rossi, P. P. (2016). Improvement of the model proposed by Menegotto and Pinto for steel. Engineering Structures, 124, 442-456. https://doi.org/10.1016/j.engstruct.2016.06.037

(52) Spacone, E., & Filippou, F. (1996, June). Flexibility-based frame models for nonlinear dynamic analysis. In Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico (pp. 23-28).

(53) Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam-column elements. Journal of Structural Engineering, 132(2), 244-252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)

(54) Scott, M. H., Fenves, G. L., McKenna, F., & Filippou, F. C. (2008). Software patterns for nonlinear beam-column models. Journal of Structural Engineering, 134(4), 562-571. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(562)

(55) Gavin, H. (2001). Numerical integration for structural dynamics. Department of Civil and Environmental Engineering, Duke University: Durham, NC, USA.

(56) Haldar, A., & Mahadevan, S. (2000). Probability, reliability, and statistical methods in engineering design. John Wiley.

(57) Mergos, P. E., & Kappos, A. J. (2015). Estimating fixed-end rotations of reinforced concrete members at yielding and ultimate. Structural Concrete, 16(4), 537-545. https://doi.org/10.1002/suco.201400067

(58) Priestley, M. N., Calvi, G. M., & Kowalsky, M. J. (2007). Displacement-based seismic design of structures. IUSS press.

(59) Crisafulli, F. J., & Carr, A. J. (2007). Proposed macro-model for the analysis of infilled frame structures.Bulletin of the New Zealand Society for Earthquake Engineering,40(2), 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77

(60) Crisafulli, F. J. (1997). Seismic behaviour of reinforced concrete structures with masonry infills.

(61) Antoniou, S., & Pinho, R. (2004). Development and verification of a displacement-based adaptive pushover procedure. Journal of earthquake engineering, 8(05), 643-661. https://doi.org/10.1080/13632460409350504

(62) Ferracuti, B., Pinho, R., Savoia, M., & Francia, R. (2009). Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Engineering Structures, 31(8), 1789-1799. https://doi.org/10.1016/j.engstruct.2009.02.035

(63) Crowley, H., Borzi, B., Pinho, R., Colombi, M., & Onida, M. (2008). Comparison of Two Mechanics-Based Methods for Simplified Structural Analysis in Vulnerability Assessment.Advances in civil Engineering. https://doi.org/10.1155/2008/438379

(64) Chopra, A. K. (1995).Dynamics of structures theory and.

(65) Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings. https://doi.org/10.1002/9780470172841

Publicado

2021-11-24

Cómo citar

Dominguez-Santos, D. . (2021). Rendimiento estructural de bloques de hormigón con agregados de madera para la construcción de edificios de mediana y gran altura. Informes De La Construcción, 73(564), e414. https://doi.org/10.3989/ic.81319

Número

Sección

Artículos