Informes de la Construcción, Vol 71, No 555 (2019)

Análisis de los fenómenos de estallido y exfoliación en piezas prefabricadas pretensadas no convencionales


https://doi.org/10.3989/ic.64053

J. Rueda Contreras
OHL Industrial, España
orcid http://orcid.org/0000-0002-8310-757X

D. Fernández Montes
ETS Ingeniería Civil de la UPM, España
orcid http://orcid.org/0000-0001-5900-6704

E. González Valle , España
orcid http://orcid.org/0000-0002-2759-5097

Resumen


El presente artículo profundiza en los fenómenos de estallido y exfoliación producidos en elementos pretesos, centrándose en piezas sin armadura transversal y con configuración no convencional. Partiendo de casos de patología documentados, se analizan ambos fenómenos. Se estudian los medios disponibles de predicción y evaluación de las tensiones asociadas, analizando la validez de su uso. Para este último fin, se realiza un estudio mediante Elementos Finitos, localizándose parámetros geométricos y mecánicos relevantes. Finalmente, se concluye con la exposición de puntos fundamentales para el correcto tratamiento del estallido y la exfoliación en este tipo de piezas, pero que no han sido suficientemente desarrollados en la bibliografía o en las normas y códigos aplicables.

Palabras clave


Hormigón pretensado; transferencia del pretensado; prefabricado; adherencia; estallido; exfoliación; pretesado

Texto completo:


HTML PDF XML

Referencias


(1) Burón, M., Fernández-Ordoñez, D. (1997). Evolución de la prefabricación para la edificación en España. Medio siglo de experiencia. Informes de la Construcción, 48(448): 19-33. http://dx.doi.org/10.3989/ic.1997.v48.i448.963. https://doi.org/10.3989/ic.1997.v48.i448.963

(2) Fernández-Ordoñez, D., Fernández, J. (2009). Industrialización para la construcción de viviendas. Viviendas asequibles realizadas con prefabricados de hormigón. Informes de la Construcción, 61(514): 71-79. https://doi.org/10.3989/ic.09.003

(3) Gómez, J. et al. (2006). Nuevo edificio terminal. Singularidades, incidencias y soluciones en la ejecución de la obra. Hormigón y Acero, 239: 129-141.

(4) Martínez, M., Sánchez, M. (2011, 25 de octubre). Ejecución de estructuras mixtas, en jácenas de sótanos para aparcamiento de vehículos. Ensayos experimentales sobre su comportamiento mecánico. En V Congreso Internacional de Estructuras de la Asociación Científico Técnica del Hormigón Estructural ACHE (pp. 909-911). Barcelona: ACHE.

(5) Rueda, J. et al. (2014, 3 de junio). Investigación de la fisuración en la zona de transferencia del pretensado de una nueva tipología de piezas prefabricadas para forjados. En VI Congreso Internacional de Estructuras de la Asociación Científico Técnica del Hormigón Estructural ACHE (pp. 33-34). Madrid: ACHE.

(6) Rueda, J., et al. (2014, 3 de septiembre). Transfer zone cracking research of a new type of prestressed floor slab. En 37th International Association for Bridge and Structural Engineering IABSE symposium: Engineering for progress, nature and people (pp. 185-192). Madrid: IABSE. IABSE Symposium Report. International Association for Bridge and Structural Engineering, Vol 102, núm 42, (pp. 185-192). https://doi.org/10.2749/222137814814027639

(7) Rueda, J. (2015). Influencia de la configuración geométrica de placas prefabricadas para forjados en las tensiones originadas por la transferencia del pretensado en elementos realizados con armaduras pretesas ancladas por adherencia (Tesis doctoral no publicada). Madrid: Universidad Politécnica de Madrid.

(8) Ministerio de Fomento (2008). Real Decreto 1247/2008 por el que se aprueba la Instrucción de hormigón estructural (EHE-08). Centro de Publicaciones de la Secretaría General Técnica del Ministerio de Fomento.

(9) Vázquez, C. (2000). Estudio comparativo de las propiedades de adherencia de cordones de pretensado en elementos prefabricados de hormigones de altas prestaciones iniciales (Tesis Doctoral no publicada). La Coruña: Universidad de La Coruña.

(10) Uijl, J.A. Den (1991, septiembre). Background of the CEB-FIP Model Code 90 Clauses on Anchorage and Transverse Tensile Actions in the Anchorage Zone of Prestressed Concrete Members. En 28th European Committee for Concrete CEB Plenary Sessions (pp. 71-94). Viena: CEB.

(11) CEB-FIP (1995). Código modelo CEB-FIP 1990 para hormigón estructural, p. 234, Madrid: GEHO-CEB.

(12) Uijl, J.A. Den (1983). Tensile stresses in the transmission zones of hollow-core slabs prestressed with pretensioned strands. En Stevin Laboratory Reports, Vol. 5 of Reports on concrete structures of the Department of Civil Engineering of Delft University of Technology (pp. 1-110). Delft: Delft University of Technology.

(13) CEB (1987). Anchorage zones of prestressed concrete members. Bulletin d'Information n.º 181, p. 137. Lausanne: Comité Euro-International du Béton.

(14) CEB-FIP (2013). fib Model Code for concrete structures 2010, p. 348. Lausanne: Ernst & Sohn.

(15) Dunkman, D.A. (2009). Bursting and spalling in pretensioned U-beams (Tesis Doctoral no publicada). Austin: The University of Texas at Austin.

(16) Gergely, P., Sozen, M.A. (1967). Design of Anchorage Zone Reinforcement in Prestressed Concrete Beams. PCI Journal, 12 (2): 63-75. https://doi.org/10.15554/pcij.04011967.63.75

(17) Gergely, P., Sozen, M.A., Siess, C.P. (1963). The Effect of Reinforcement on Anchorage Zone Cracks in Prestressed Concrete Members. En Structural Research Series, Vol. 271 of Structural Research Series of University of Illinois (pp. 1-190). Urbana: University of Illinois.

(18) Tuan, C.Y. et al. (2004). End zone reinforcement for pretensioned concrete girders. PCI Journal, 49 (3): 68-82. https://doi.org/10.15554/pcij.05012004.68.82

(19) Marshal, W.T., Mattock, A.H. (1962). Control of horizontal cracking in the ends of pretensioned prestressed concrete girders. PCI Journal, 7 (10): 56-75. https://doi.org/10.15554/pcij.10011962.56.74

(20) Arthur, P.D., Ganguli, S. (1965). Test on end-zones stresses in pre-tensioned concrete I beams. Magazine of Concrete Research, 17 (51): 85-96. https://doi.org/10.1680/macr.1965.17.51.85

(21) French, C. et al. (2011). Cast-in-place concrete conections for precast deck system. En Transportation Research Board of the National Academies, NCHRP 10-71 Final Report of Transportation Research Board of the National Academies, (1-782). Washington: The National Academies of Sciences, Engineering, and Medicine.

(22) FIP Recommendations (1988). FIP Recommendations: Precast prestressed hollow core floors, p. 4. London: Thomas Telford.

(23) AENOR-CEN (2011). UNE-EN 1168:2006+A3:2011 Productos prefabricados de hormigón. Placas alveolares. Asociación Española de Normalización (AENOR).

(24) ACI 318 (2014). ACI 318-14 Building Code Requirements for Structural Concrete. American Concrete Institute (ACI).

(25) Khonke, P. (1999). ANSYS Theory reference (1999), pp. 14-494. Canonsburg: SAS IP, Inc.

(26) Rueda, J., González, E.(2014). Modelos de transferencia del pretensado: Análisis comparativo. Hormigón y acero, 65 (272): 97-111. https://doi.org/10.1016/S0439-5689(14)70002-6

(27) PCI (2006). Tolerance manual for precast and prestressed concrete construction. MNL 135-00. Third Edition, p. 59. Chicago: Precast / Prestressed Concrete Institute (PCI). USA.

(28) Cook, D.J.,Chindaprasirt, P.(1981). Influence of loading history upon the tensile properties of concrete. Magazine of Concrete Research, 33 (116): 154-160. https://doi.org/10.1680/macr.1981.33.116.154

(29) CEB-FIP (2008). Constitutive modelling of high strength/high performance concrete. Fib Bulletin, 42, p. 45. Lausanne: Fédération Internationale du Béton.

(30) CEN (2004). EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1 - 1: General rules and rules for buildings. European Committee for Standardization (CEN).




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista informes@ietcc.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es